Skip to main content
Log in

Anisotropy in Mechanical Properties and Corrosion of X-52 Pipeline Steel at Different Pipe Angles

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Non-uniform corrosion and cracking could occur at different pipe angles (different clocks) on oil and gas transmission pipelines. While this could be due to different environmental conditions surrounding the pipeline or nonuniformity in microstructure, mechanical and corrosion properties at different pipe angles. This study investigates corrosion and mechanical properties of X-52 pipeline steel at different pipe angles. In this regard, microscopic characterization, weight loss corrosion tests, electrochemical corrosion tests, and also mechanical characterizations tests (hardness, tensile and fracture toughness) were performed. Results showed that corrosion and mechanical properties of the X-52 pipeline steel was not uniform at different pipe angles and 180 degree (6 o’clock) position had the most corrosion rate and fracture toughness. Nonuniformity in grain orientations and microstructure of pipeline steel is considered to be the reason for anisotropy observed in corrosion and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. Specified minimum yield strength.

  2. Energy dispersive spectroscopy.

REFERENCES

  1. API Specification 5L, Specification for Line Pipe, 2004.

  2. Yan, M., Wang, J., Hana, E., and Ke, W., Corros. Sci., 2008, vol. 50, pp. 1331–1339.

    Article  Google Scholar 

  3. Alamilla, J.L., Espinosa-Medina, M.A., and Sosa, E., Corros. Sci., 2009, vol. 51, pp. 2628–2638.

    Article  Google Scholar 

  4. Rao, K.S. and Rao, K.P., Mater. Sci. Technol., 2006, vol. 22, pp. 97–104.

    Article  Google Scholar 

  5. Cole, S.I. and Marney, D., Corros. Sci., 2012, vol. 56, pp. 5–16.

    Article  Google Scholar 

  6. Zvirko, O.I., Savula, S.F., Tsependa, V.M., Gabetta, G., and Nykyforchyn, H.M., Procedia Struct. Integr., 2016, vol. 2, pp. 509–516.

    Article  Google Scholar 

  7. Zhang, L., Li, X.G., and Cheng, Y.F., Mater. Eng. Perform., 2009, vol. 18, pp. 319–323.

    Article  Google Scholar 

  8. Benmoussa, A., Hadjel, M., and Traisnel, M., Mater. Corros., 2006, vol. 57, pp. 771–777.

    Article  Google Scholar 

  9. Liang, Z., Xiaogang, L., Cuiwei, D., and Yizhong, H., Mater. Des., 2009, vol. 30, pp. 2259–2263.

    Article  Google Scholar 

  10. Fang, B., Han, E.H., Wang, J., Zhu, Z., and Ke, W., Mater. Sci., 2006, vol. 41, pp. 1797–1803.

    Article  Google Scholar 

  11. Meng, G.Z., Zhang, C., and Cheng, Y.F., Corros. Sci., 2008, vol. 50, pp. 3116–3122.

    Article  Google Scholar 

  12. Bueno, A.H.S. and Gomes, J.A.C.P., J. Braz. Soc. Mech. Sci. Eng., 2009, vol. 31, no. 2, pp. 97–104.

    Article  Google Scholar 

  13. Beavers, J.A. and Thompson, N.G., External Corrosion of Oil and Natural Gas Pipelines, Materials Park, OH: ASM Int., 2006.

    Google Scholar 

  14. Manfredi, C. and Otegui, J.L., Eng. Failure Anal., 2002, vol. 9, pp. 495–509.

    Article  Google Scholar 

  15. Liu, Z.Y., Wang, X.Z., Du, C.W., Li, J.K., and Li, X.G., Mater. Sci. Eng., 2016, vol. 658, pp. 348–354.

    Article  Google Scholar 

  16. Wu, T., Xu, J., Yan, M., Sun, C., Yu, C., and Ke, W., Corros. Sci., 2014, vol. 83, pp. 38–47.

    Article  Google Scholar 

  17. He, B., Han, P., Lu, C., and Bai, X., Eng. Failure Anal., 2015, vol. 58, pp. 19–30.

    Article  Google Scholar 

  18. Chen, X., Li, X.G., Du, C.W., and Cheng, Y.F., Corros. Sci., 2009, vol. 51, pp. 2242–2245.

    Article  Google Scholar 

  19. Sha, Q. and Li, D., Mater. Sci. Eng., 2013, vol. 585, pp. 214–221.

    Article  Google Scholar 

  20. Hejazi, D., Haq, A.J., Yazdipour, N., Dunne, D.P., Calka, A., Barbaro, F., and Pereloma, E.V., Mater. Sci. Eng., 2012, vol. 551, pp. 40–49.

    Article  Google Scholar 

  21. Bannister, A.C., Determination of Fracture Toughness from Charpy Impact Energy, British Steel plc Report, British Steel, 1998.

    Google Scholar 

  22. Jones, D.A., Principles and Prevention of Corrosion, Prentice Hall, 1992.

    Google Scholar 

  23. Wang, J.Q., and Atrens, A., Corros. Sci., 2003, vol. 45, pp. 2199–2217.

    Article  Google Scholar 

  24. Nesic, S., Corros. Sci., 2007, vol. 49, pp. 4308–4338.

    Article  Google Scholar 

  25. Tang, X., and Cheng, Y.F., Appl. Surf. Sci., 2008, vol. 254, pp. 5199–5205.

    Article  Google Scholar 

  26. Qin, Z., Demko, B., Noël, J., Shoesmith, D., King, F., Worthingham, R., and Keith, K., Corros. Sci., 2004, vol. 22, pp. 604–612.

    Google Scholar 

  27. Fang, B., Han, E.H., Wang, J., and Ke, W., Corros. Sci., 2007, vol. 63, pp. 419–432.

    Article  Google Scholar 

  28. Li, M.C. and Cheng, Y.F., Electrochim. Acta, 2007, vol. 52, pp. 8111–8117.

    Article  Google Scholar 

  29. Mao, X., Liu, X., and Revie, R.W., Corros. Sci., 2000, vol. 50, pp. 651–657.

    Article  Google Scholar 

  30. Lu, B.T., and Luo, J.L., Corros. Sci., 2006, vol. 62, pp. 129–140.

    Article  Google Scholar 

  31. Liu, Z.Y., Li, X.G., Du, X.W., Zhai, G.L., and Cheng, Y.F., Corros. Sci., 2008, vol. 50, pp. 2251–2257.

    Article  Google Scholar 

  32. Chen, W., Kania R., Worthingham, R., and Boven, G.V., Acta Mater., 2009, vol. 57, pp. 6200–6214.

    Article  Google Scholar 

  33. Sun, W. and Nesic, S., Corros. Sci., 2008, vol. 64, pp. 334–346.

    Article  Google Scholar 

  34. Cheng, Y.F., Electrochim. Acta, 2007, vol. 52, pp. 2661–2667.

    Article  Google Scholar 

  35. Van Boven, G., Chen, W., and Rogge, R., Acta Mater., 2007, vol. 55, pp. 29–42.

    Article  Google Scholar 

  36. Ramirez, E., Rodriguez, J.G., Torres, T., Serna, S., Campillo, B., Dominguez, G., and Jurez, J.A., Corros. Sci., 2008, vol. 50, pp. 3534–3541.

    Article  Google Scholar 

  37. Zhang, X., Xiao, K., Dong, C., Wu, J., Li, X., and Haung, Y., Eng. Failure Anal., 2011, vol. 18, pp. 1981–1989.

    Article  Google Scholar 

Download references

Funding

The authors would like to thank Isfahan University of Technology (IUT) and also Ahvaz Steel Company for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Eslami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashari, R., Eslami, A. Anisotropy in Mechanical Properties and Corrosion of X-52 Pipeline Steel at Different Pipe Angles. Prot Met Phys Chem Surf 55, 546–553 (2019). https://doi.org/10.1134/S2070205119030043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119030043

Keywords:

Navigation