Skip to main content
Log in

Effect of Gelling Agent and Calcination Temperature in Sol–Gel Synthesized MgO Nanoparticles

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Magnesium oxide (MgO) is a versatile metal oxide with wide applications in electrical, chemical and pharmaceutical industries. Preparation of nano-MgO helps to enhance key physicochemical properties for optimal performance in industrial applications. In the present work, MgO nanoparticles were synthesized by magnesium nitrate precursor in ethanol. Different gelling agents were employed to investigate potential variations in the crystallinity and thermal behavior of the sol–gel product to control the nanoparticle’s size distribution. The crystal and thermal characteristics of the synthesized MgO nanoparticles were studied using X-ray diffraction (XRD) and Thermogravimetry-Differential Scanning Calorimetry (TG-DSC) analysis. The XRD data showed that all the samples demonstrated crystallinity except sample B which was amorphous. The TG-DSC characterization showed a three stage thermal decomposition for all the samples, leading to the formation of MgO nanoparticles. Based on the thermal analysis data, different calcination temperatures were selected to investigate their effects on stability, and the sample prepared with tartaric acid as a gelling agent and calcined at 500oC demonstrated the smallest average particle size of 58.7 nm obtained from dynamic light scattering (DLS) analysis. Further, this sample was subjected to XRD, FTIR and TEM analysis which reveals that the calcination yielded impure, 30 nm sized spherical shaped, agglomerated MgO nanoparticles. Additionally, the physicochemical characteristics of the selected sample reveals that pure MgO nanoparticles with uniform morphology can be obtained via alteration of calcination time and heating rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Kajihara, K., J. Asian Ceram. Soc., 2013, vol. 1, p. 121.

    Article  Google Scholar 

  2. Rideal, E. and Davies, J., Interfacial Phenomena, London: Academic Press, 1963.

    Google Scholar 

  3. Hench, L.L. and West, J.K., Chem. Rev., 1990, vol. 90, p. 33.

    Article  Google Scholar 

  4. Niederberger, M., Acc. Chem. Res., 2007, vol. 40, p. 793.

    Article  Google Scholar 

  5. Mackenzie, J.D., J. Non-Cryst. Solids, 1988, vol. 100, p. 162.

    Article  Google Scholar 

  6. Rao, C. and Raveau, B., Annu. Rev. Phys. Chem., 1989, vol. 40, p. 291.

    Article  Google Scholar 

  7. Niederberger, M. and Pinna, N., Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application, Heidelberg: Springer, 2009.

  8. Stoimenov, P.K., Klinger, R.L., Marchin, G.L., and Klabunde, K.J., Langmuir, 2002, vol. 18, p. 6679.

    Article  Google Scholar 

  9. Veldurthi, S., Shin, C.-H., Joo, O.-S., and Jung, K.-D., Microporous Mesoporous Mater., 2012, vol. 152, p. 31.

    Article  Google Scholar 

  10. Krishnamoorthy, K., Moon, J.Y., Hyun, H.B., Cho, S.K., and Kim, S.-J., J. Mater. Chem., 2012, vol. 22, p. 24610.

    Article  Google Scholar 

  11. Gulková, D., Šolcová, O., and Zdražil, M., Microporous Mesoporous Mater., 2004, vol. 76, p. 137.

    Article  Google Scholar 

  12. Climent, M.J., Corma, A., Iborra, S., and Mifsud, M., J. Catal., 2007, vol. 247, p. 223.

    Article  Google Scholar 

  13. Faghihi-Sani, M.-A. and Yamaguchi, A., Ceram. Int., 2002, vol. 28, p. 835.

    Article  Google Scholar 

  14. Ouraipryvan, P., Sreethawong, T., and Chavadej, S., Mater. Lett., 2009, vol. 63, p. 1862.

    Article  Google Scholar 

  15. Makhluf, S., Dror, R., Nitzan, Y., Abramovich, Y., Jelinek, R., and Gedanken, A., Adv. Funct. Mater., 2005, vol. 15, p. 1708.

    Article  Google Scholar 

  16. Bertinetti, L., Drouet, C., Combes, C., Rey, C., Tampieri, A., Coluccia, S., and Martra, G., Langmuir, 2009, vol. 25, p. 5647.

    Article  Google Scholar 

  17. Martinez-Boubeta, C., Balcells, L., Cristòfol, R., Sanfeliu, C., Rodríguez, E., Weissleder, R., Lope-Piedrafita, S., Simeonidis, K., Angelakeris, M., and Sandiumenge, F., Nanomed.: Nanotechnol., Biol., Med., 2010, vol. 6, p. 362.

    Article  Google Scholar 

  18. Chalkidou, A., Simeonidis, K., Angelakeris, M., Samaras, T., Martinez-Boubeta, C., Balcells, L., Papazisis, K., Dendrinou-Samara, C., and Kalogirou, O., J. Magn. Magn. Mater., 2011, vol. 323, p. 775.

    Article  Google Scholar 

  19. Di, D.-R., He, Z.-Z., Sun, Z.-Q., and Liu, J., Nanomed.: Nanotechnol., Biol., Med., 2012, vol. 8, p. 1233.

    Article  Google Scholar 

  20. Mastuli, M.S., Kamarulzaman, N., Nawawi, M.A., Mahat, A.M., Rusdi, R., and Kamarudin, N., Nanoscale Res. Lett., 2014, vol. 9, p. 1.

    Article  Google Scholar 

  21. Rao, J.P. and Geckeler, K.E., Prog. Polym. Sci., 2011, vol. 36, p. 887.

    Article  Google Scholar 

  22. Jeevanandam, J., San Chan, Y., and Danquah, M.K., Biochimie, 2016, vol. 128, p. 99.

    Article  Google Scholar 

  23. Ding, Y., Zhang, G., Wu, H., Hai, B., Wang, L., and Qian, Y., Chem. Mater., 2001, vol. 13, p. 435.

    Article  Google Scholar 

  24. Esmaeili, E., Khodadadi, A., and Mortazavi, Y., J. Eur. Ceram. Soc., 2009, vol. 29, p. 1061.

    Article  Google Scholar 

  25. Nemade, K. and Waghuley, S., Int. J. Met., 2014, vol. 2014, p. 389416.

    Google Scholar 

  26. Mastuli, M.S., Kamarulzaman, N., Nawawi, M.A., Mahat, A.M., Rusdi, R., and Kamarudin, N., Nanoscale Res. Lett., 2014, vol. 9, p. 1.

    Article  Google Scholar 

  27. Suresh, S., J. Ovonic Res., 2014, vol. 10, p. 205.

    Google Scholar 

  28. Demirci, S., Öztürk, B., Yildirim, S., Bakal, F., Erol, M., Sancakoğlu, O., Yigit, R., Celik, E., and Batar, T., Mater. Sci. Semicond. Process., 2015, vol. 34, p. 154.

    Article  Google Scholar 

  29. Mastuli, M.S., Ansari, N.S., Nawawi, M.A., and Mahat, A.M., APCBEE Proc., 2012, vol. 3, p. 93.

  30. Vatsha, B., Tetyana, P., Shumbula, P.M., Ngila, J.C., Sikhwivhilu, L.M., and Moutloali, R.M., J. Biomater. Nanobiotechnol., 2013, vol. 4, p. 365.

    Article  Google Scholar 

  31. Uche, D.O.V., Adv. Appl. Sci. Res., 2013, vol. 4, p. 506.

    Google Scholar 

  32. Zhang, J.-J., Ning, J.-W., Liu, X.-J., Pan, Y.-B., and Huang, L.-P., Mater. Res. Bull., 2003, vol. 38, p. 1249.

    Article  Google Scholar 

  33. Kareiva, A., Karppinen, M., and Niinisto, L., J. Mater. Chem., 1994, vol. 4, p. 1267.

    Article  Google Scholar 

  34. Thirunakaran, R., Kim, K.-T., Kang, Y.-M., and Young-Lee, J., Mater. Res. Bull., 2005, vol. 40, p. 177.

    Article  Google Scholar 

  35. Park, S.H. and Sun, Y.-K., J. Power Sources, 2003, vols. 119–121, p. 161.

    Article  Google Scholar 

  36. Danks, A., Hall, S., and Schnepp, Z., Mater. Horiz., 2016, vol. 3, p. 91.

    Article  Google Scholar 

  37. Kumar, A. and Kumar, J., J. Phys. Chem. Solids, 2008, vol. 69, p. 2764.

    Article  Google Scholar 

  38. Jaison, J., Balakumar, S., and Chan, Y., IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 78, p. 012005.

  39. Jeevanandam, J., Chan, Y.S., and Danquah, M.K., ChemistrySelect, 2017, vol. 2, p. 10393

    Article  Google Scholar 

  40. Gupta, P.K., J. Non-Cryst. Solids, 1996, vol. 195, p. 158.

    Article  Google Scholar 

  41. Lu, K., Mater. Sci. Eng., R, 1996, vol. 16, p. 161.

    Article  Google Scholar 

  42. Braibanti, A., Tiripicchio, A., Camellini, M., Lanfredi, A., and Bigoli, F., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, vol. 25, p. 354.

    Article  Google Scholar 

  43. Simonsen, O., Mogelmosea, M.-L.H., and Courb, A.I., Acta Chem. Scand., 1999, vol. 53, p. 432.

    Article  Google Scholar 

  44. Szabó, T., Tombácz, E., Illés, E., and Dékány, I., Carbon, 2006, vol. 44, p. 537.

    Article  Google Scholar 

  45. Zallen, R., The Physics of Amorphous Solids, John Wiley and Sons, 1983.

    Book  Google Scholar 

  46. Hilden, L.R. and Morris, K.R., J. Pharm. Sci., 2004, vol. 93, p. 3.

    Article  Google Scholar 

  47. Livage, J. and Sanchez, C., J. Non-Cryst. Solids, 1992, vol. 145, p. 11.

    Article  Google Scholar 

  48. Doreswamy, B., Mahendra, M., Sridhar, M., Prasad, J.S., Varughese, P., George, J., and Varghese, G., Mater. Lett., 2005, vol. 59, p. 1206.

    Article  Google Scholar 

  49. Sato, N., Quitain, A.T., Kang, K., Daimon, H., and Fujie, K., Ind. Eng. Chem. Res., 2004, vol. 43, p. 3217.

    Article  Google Scholar 

  50. Keely, W. and Maynor, H.W., J. Chem. Eng. Data, 1963, vol. 8, p. 297.

    Article  Google Scholar 

  51. Tanaka, K., Capule, M.F., and Hisanaga, T., Chem. Phys. Lett., 1991, vol. 187, p. 73.

    Article  Google Scholar 

  52. Yu, J.-G., Yu, H.-G., Cheng, B., Zhao, X.-J., Yu, J.C., and Ho, W.-K., J. Phys. Chem. B, 2003, vol. 107, p. 13871.

    Article  Google Scholar 

  53. Zhang, W.-X., Wang, Y.-Z., and Sun, C.-F., J. Polym. Res., 2007, vol. 14, p. 467.

    Article  Google Scholar 

  54. Golberg, D., Bando, Y., Fushimi, K., Mitome, M., Bourgeois, L., and Tang, C.-C., J. Phys. Chem. B, 2003, vol. 107, p. 8726.

    Article  Google Scholar 

  55. Christodoulou, C., Schlup, J., and Hadjipanayis, G., J. Appl. Phys., 1987, vol. 61, p. 3760.

    Article  Google Scholar 

  56. Pang, Y.X. and Bao, X., J. Eur. Ceram. Soc., 2003, vol. 23, p. 1697.

    Article  Google Scholar 

  57. Yu, J. and Wang, B., Appl. Catal., B, 2010, vol. 94, p. 295.

    Article  Google Scholar 

  58. Gibson, I., Rehman, I., Best, S., and Bonfield, W., J. Mater. Sci.: Mater. Med., 2000, vol. 11, p. 799.

    Google Scholar 

  59. Pokroy, B., Fitch, A.N., Lee, P.L., Quintana, J.P., El’ad, N.C., and Zolotoyabko, E., J. Struct. Biol., 2006, vol. 153, p. 145.

    Article  Google Scholar 

  60. Keshmiri, M., Mohseni, M., and Troczynski, T., Appl. Catal., B, 2004, vol. 53, p. 209.

    Article  Google Scholar 

  61. Wang, L. and Muhammed, M., J. Mater. Chem., 1999, vol. 9, p. 2871.

    Article  Google Scholar 

  62. Demir, M.M., Gulgun, M.A., Menceloglu, Y.Z., Erman, B., Abramchuk, S.S., Makhaeva, E.E., Khokhlov, A.R., Matveeva, V.G., and Sulman, M.G., Macromolecules, 2004, vol. 37, p. 1787.

    Article  Google Scholar 

  63. Tamilselvi, P., Yelilarasi, A., Hema, M., and Anbarasan, R., Nano Bull., 2013, vol. 2, p. 130106.

    Google Scholar 

  64. Rezaei, M., Khajenoori, M., and Nematollahi, B., Powder Technol., 2011, vol. 205, p. 112.

    Article  Google Scholar 

  65. Song, G., Ma, S., Tang, G., and Wang, X., Colloids Surf., A, 2010, vol. 364, p. 99.

    Article  Google Scholar 

  66. Santander, N., Das, S.R., Majumder, S.B., and Katiyar, R.S., Surf. Coat. Technol., 2004, vol. 177, p. 60.

    Article  Google Scholar 

  67. Vignesh Subramanian, I.B., Pranav, R. and Rajendran, N., J. Chem. Pharm. Res., 2015, vol. 7, p. 116.

    Google Scholar 

  68. Rhodes, W.H., J. Am. Ceram. Soc., 1981, vol. 64, p. 19.

    Article  Google Scholar 

  69. Yeh, M.Y., Lin, C., Vu, C.T., Hsu, K.F., Lee, S.Y., Li, W.R., and Yen, C.-F., Mater. Res. Bull., 2017, vol. 90, p. 182.

    Article  Google Scholar 

  70. Namvar, N., Salahinejad, E., Saberi, A., Baghjeghaz, M.J., Tayebi, L., and Vashaee, D., Ceram. Int., 2017, vol. 43, no. 16, pp. 13781–13785.

    Article  Google Scholar 

  71. Mastuli, M.S., Kamarulzaman, N., Nawawi, M.A., Mahat, A.M., Rusdi, R., and Kamarudin, N., Nanoscale Res. Lett., 2014, vol. 9, p. 134.

    Article  Google Scholar 

Download references

FUNDING

The authors wish to acknowledge Curtin University, Malaysia for financial support through the Curtin Sarawak Postgraduate Research Scholarship (CSPRS) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen San Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaison Jeevanandam, San Chan, Y. & Danquah, M.K. Effect of Gelling Agent and Calcination Temperature in Sol–Gel Synthesized MgO Nanoparticles. Prot Met Phys Chem Surf 55, 288–301 (2019). https://doi.org/10.1134/S2070205119020114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119020114

Keywords:

Navigation