Skip to main content
Log in

Oxidation Behavior of Nanostructured Ni-5Al Coating. A case Study on Monophase Coatings

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Oxidation behavior of nanostructured Ni-5Al HVOF coatings was studied. For this purpose, isothermal oxidation of the free standing coatings was performed at 950°C. Lattice parameter determination technique was used for evaluating aluminum depletion to characterize oxidation behavior. The results showed that Al-depletion rate of the nanostructured coating was less than that of the conventional one, suggesting superior oxidation resistance of the nanostructured one. One reason, besides the one usually ascribed to grain size refinement and distribution of Nano oxides, lies in the coating integrity which imply the absence of any notable discontinuities including inter-splat oxides and porosities. On the other hand, vacuum heat treatment revealed that the nanostructured coating exhibited a phenomenon called diffusional creep, which is thought to be the most effective one in all densification mechanisms responsible for metallurgical consolidation processes. It was argued that this mechanism must also be active during oxidation in air and therefore can help retain the coating integrity, providing a sound metallic base for durable surface supply of aluminum throughout oxidation process. Therefore, coating integrity also is central to the formation of the protective α-Al2O3 subscale, as observed and argued in this paper for the nanostructured Ni-5Al coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Meier, G.H., Mater. Sci. Eng., A, 1989, vol. 120, p. 1.

    Article  Google Scholar 

  2. Nicholls, J.R., JOM, 2000, vol. 52, p. 28.

    Article  CAS  Google Scholar 

  3. Deshpande, S., Sampath, S., and Zhang, H., Surf. Coat. Technol., 2006, vol. 200, p. 5395.

    Article  CAS  Google Scholar 

  4. Saeedi, B., Aghdam, A.S.R., and Gholami, G., Surf. Coat. Technol., 2015, vol. 276, p. 704.

    Article  CAS  Google Scholar 

  5. Niu, Y., Wu, Y., and Gesmundo, F., Corros. Sci., 2006, vol. 48, p. 1.

    Article  CAS  Google Scholar 

  6. Wu, Y. and Niu, Y., Corros. Sci., 2007, vol. 49, p. 1656.

    Article  CAS  Google Scholar 

  7. Hindam, H.M. and Smeltzer, W.W., J. Electrochem. Soc., 1980, vol. 127, p. 1622.

    Article  CAS  Google Scholar 

  8. Mahesh, R.A., Jayaganthan, R., and Prakash, S., J. Alloys Compd., 2008, vol. 460, p. 220.

    Article  CAS  Google Scholar 

  9. Mahesh, R.A., Jayaganthan, R., and Prakash, S., J. Mater. Process. Technol., 2009, vol. 209, p. 3501.

    Article  CAS  Google Scholar 

  10. Saladi, S., Menghani, J., and Prakash, S., J. Mater. Eng. Perform., 2014, vol. 23, p. 4394.

    Article  CAS  Google Scholar 

  11. Fossati, A., Di Ferdinando, M., Lavacchi, A., Bardi, U., Giolli, C., and Scrivani, A., Surf. Coat. Technol., 2010, vol. 204, p. 3723.

    Article  CAS  Google Scholar 

  12. Di Ferdinando, M., Fossati, A., Lavacchi, A., Bardi, U., Borgioli, F., Borri, C., Giolli, C., and Scrivani, A., Surf. Coat. Technol., 2010, vol. 204, p. 2499.

    Article  CAS  Google Scholar 

  13. Pearson, W.B., A Handbook of Lattice Spacings and Structures of Metals and Alloys, vol. 4 of International Series of Monographs on Metal Physics and Physical Metallurgy, Elsevier, 2013, p. 377

  14. Elsukov, E.P. and Protasov, A.V., Phys. Met. Metallogr., 2011, vol. 111, p. 503.

    Article  Google Scholar 

  15. Rajkovic, V., Bozic, D., and Jovanovic, M.T., Mater. Des., 2010, vol. 31, p. 1962.

    Article  CAS  Google Scholar 

  16. Rajkovic, V., Bozic, D., and Jovanovic, M.T., Mater. Charact., 2006, vol. 57, p. 94.

    Article  CAS  Google Scholar 

  17. Suryanarayana, C. and Norton, M.G., X-Ray Diffraction: A Practical Approach, Springer Science & Business Media, 1998, pp. 153–166.

    Book  Google Scholar 

  18. Mercier, D., Kaplin, C., Goodall, G., Kim, G., and Brochu, M., Surf. Coat. Technol., 2010, vol. 205, p. 2546.

    Article  CAS  Google Scholar 

  19. Ajdelsztajn, L., Picas, J.A., Kim, G.E., Bastian, F.L., Schoenung, J., and Provenzano, V., Mater. Sci. Eng., A, 2002, vol. 338, p. 33.

    Article  Google Scholar 

  20. Whittle, D.P. and Stringer, J., Philos. Trans. R. Soc., A, 1980, vol. 295, p. 309.

  21. Tang, F., Ajdelsztajn, L., Kim, G.E., Provenzano, V., and Schoenung, J.M., Surf. Coat. Technol., 2004, vol. 185, p. 228.

    Article  CAS  Google Scholar 

  22. Pragnell, W.M., Evans, H.E., Naumenko, D., and Quadakkers, W.J., Mater. High Temp., 2005, vol. 22, p. 561.

    Article  CAS  Google Scholar 

  23. Saeedi, B., PhD Thesis, Tehran: Tarbiat Modares Univ., 2014.

  24. Spitsberg, I. and More, K., Mater. Sci. Eng., A, 2006, vol. 417, p. 322.

    Article  CAS  Google Scholar 

  25. Hwang, S.J. and Lee, J.H., Mater. Sci. Eng., A, 2005, vol. 405, p. 140.

    Article  CAS  Google Scholar 

  26. Mackert, J.R., Metall. Trans. A, 1986, vol. 17, p. 746.

    Article  Google Scholar 

  27. Yi, H.C., Guan, S.W., Smeltzer, W.W., and Petric, A., Acta Metall. Mater., 1994, vol. 42, p. 981.

    Article  CAS  Google Scholar 

  28. Lorrain, N., Chaffron, L., and Carry, C., J. Metastable Nanocryst. Mater., 1999, vol. 2, p. 153.

    Article  Google Scholar 

  29. Picas, J.A., Forn, A., Ajdelsztajn, L., and Schoenung, J., Powder Technol., 2004, vol. 148, p. 20.

    Article  CAS  Google Scholar 

  30. Niranatlumpong, P., Ponton, C.B., and Evans, H.E., Oxid. Met., 2000, vol. 53, p. 241.

    Article  CAS  Google Scholar 

  31. Chen, Y.X., Liang, X.B., Liu, Y., Wei, S.C., and Xu, B.S., Surf. Eng., 2010, vol. 26, p. 407.

    Article  CAS  Google Scholar 

  32. Huang, R., Sone, M., Ma, W., and Fukanuma, H., Surf. Coat. Technol., 2015, vol. 261, p. 278.

    Article  CAS  Google Scholar 

  33. Groza, J.R., J. Mater. Eng. Perform., 1993, vol. 2, p. 283.

    Article  CAS  Google Scholar 

  34. Eisen, W.B., Ferguson, B.L., German, R.M., Iacocca, R., Lee, P.W., Madan, D., Moyer, K., Sanderow, H., and Trudel, Y., ASM Handbook, vol. 7: Powder Metal Technologies and Applications, ASM Int., 1998, pp. 1401–1423.

    Google Scholar 

  35. Eddine, W.Z., Matteazzi, P., and Celis, J.P., Wear, 2013, vol. 297, p. 762.

    Article  CAS  Google Scholar 

  36. Evans, H.E. and Taylor, M.P., Oxid. Met., 2001, vol. 55, p. 17.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Dr. Shahverdi and Dr. Shahrabi for use of the laboratory facilities. We would also like to thank their laboratory management and their students whose suggestions and guidance were constructive.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Gholami, B. Saeedi or A. Sabour Rouhaghdam.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, G., Saeedi, B. & Rouhaghdam, A.S. Oxidation Behavior of Nanostructured Ni-5Al Coating. A case Study on Monophase Coatings. Prot Met Phys Chem Surf 54, 1066–1075 (2018). https://doi.org/10.1134/S2070205118060114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205118060114

Keywords:

Navigation