Skip to main content
Log in

Investigation of the corrosion behavior of cathodic arc evaporated stainless steel coating in 3.5% NaCl

  • New Substances, Materials, and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this paper, two major technical problems (growth defects and chromium content loss) encountering when cathodic arc evaporation physical vapor deposition (CAE-PVD) was used for deposition of stainless steel and their subsequent effects on corrosion behavior of the coating in 3.5 wt % NaCl solution have been investigated. Growth defects in spherical and needle-like shapes were the common defects that resulted from CAE-PVD of a stainless steel and played a major role in determining the corrosion behavior of the coating. The results showed a composition difference between the coating matrix (with ~11 at % Cr) and the growth defects, particularly needle-like ones (with ~15 at % Cr). According to SEM images, it seemed that the needle-like defects were passivated and were susceptible to pitting corrosion while coating matrix was corroded. The results also showed that the corrosion of the coating was influenced by two factors: building up micro-galvanic cells between the needle-like defects (as passivated regions) and both coating matrix and the spherical defects (as active sites). In addition, an intense localized corrosion (as micro-crevice corrosion) was observed around the growth defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McCafferty, E., Introduction to Corrosion Science, New York: Springer, 2010.

    Book  Google Scholar 

  2. Asami, K., Hashimoto, K., and Shimodaira, S, Corros. Sci., 1978, vol. 18, p. 151.

    Article  Google Scholar 

  3. Oblonsky, L.J., Ryan, M.P., and Isaacs, H.S, J. Electrochem. Soc., 1998, vol. 145, p. 1922.

    Article  Google Scholar 

  4. Guilemany, J.M., Fernández, J., Espallargas, N., et al, Surf. Coat. Technol., 2006, vol. 200, p. 3064.

    Article  Google Scholar 

  5. Kawakita, J., Fukushima, T., Kuroda, S., et al, Corros. Sci., 2002, vol. 44, p. 2561.

    Article  Google Scholar 

  6. Suegama, P.H., Fugivara, C.S., Benedetti, A.V., et al, Corros. Sci., 2005, vol. 47, p. 605.

    Article  Google Scholar 

  7. Meng, X.M., Zhang, J.B., Han, W., et al, Appl. Surf. Sci., 2011, vol. 258, p. 700.

    Article  Google Scholar 

  8. Adelkhani, H. and Arshadi, M.R., J. Alloys Compd., 2009, vol. 476, p. 234.

    Article  Google Scholar 

  9. Pan, Ch., Liu, L., Li, Y., et al, Electrochim. Acta, 2011, vol. 56, p. 7740.

    Article  Google Scholar 

  10. Liu, L., Li, Y., and Wang, F, Electrochim. Acta, 2010, vol. 55, p. 2430.

    Article  Google Scholar 

  11. Shedden, B.A., Kaul, F.N., Samandi, M., et al, Surf. Coat. Technol., 1997, vol. 97, p. 102.

    Article  Google Scholar 

  12. Poirier, D.M. and Lindfors, P.A, J. Vac. Sci. Technol. A, 1991, vol. 9, p. 278.

    Article  Google Scholar 

  13. Iqbal, Z., Hussain, I., Rauf, A., et al, Prot. Met. Phys. Chem. Surf., 2012, vol. 48, p. 371.

    Article  Google Scholar 

  14. André, A, Surf. Coat. Technol., 1999, vols. 120–121, p.319.

    Google Scholar 

  15. Pauleau, Y. and Barna, P.B., Protective Coatings and Thin Films: Synthesis, Characterization and Applications, Dordrecht, Boston: Kluwer Academic Publ., 1996.

    Google Scholar 

  16. ASTM G 61–86: Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron, Nickel, or Cobalt-Based Alloys, West Conshohocken, PA: ASTM Int., 2003.

  17. Fernandes, C.M., Ferreira, V.M., Senosa, A.M.R., et al, Surf. Coat. Technol., 2003, vol. 176, p. 103.

    Article  Google Scholar 

  18. Song, Y.S., Lee, J.H., Lee, K.H., et al, Surf. Coat. Technol., 2005, vol. 195, p. 227.

    Article  Google Scholar 

  19. André, A, Thin Solid Films, 2010, vol. 518, p. 4087.

    Article  Google Scholar 

  20. Zheng, Z.J., Gao, Y., Gui, Y., et al, Corros. Sci., 2012, vol. 54, p. 60.

    Article  Google Scholar 

  21. Lewis, D.B., Creasey, S.J., Wüstefeld, C., et al, Thin Solid Films, 2006, vol. 503, p. 14.

    Google Scholar 

  22. Wang, H.W., Stack, M.M., and Lyons, S.B, Surf. Coat. Technol., 2000, vol. 126, p. 279.

    Article  Google Scholar 

  23. Kocijan, A., Donik, C., and Jenko, M, Corros. Sci., 2007, vol. 49, p. 2083.

    Article  Google Scholar 

  24. Olsson, C.O.A. and Landolt, D, Electrochim. Acta, 2003, vol. 48, p. 1093.

    Article  Google Scholar 

  25. Li, M., Luo, S., Zeng, C., et al, Corros. Sci., 2004, vol. 46, p. 1369.

    Article  Google Scholar 

  26. Lee, J.B, Mater. Chem. Phys., 2006, vol. 99, p. 224.

    Article  Google Scholar 

  27. Syrett, B.C. and Wing, S.S, Corrosion, 1978, vol. 34, p. 138.

    Article  Google Scholar 

  28. Pan, C., Liu, L., Li, Y, Corros. Sci., 2013, vol. 73, p. 32.

    Article  Google Scholar 

  29. Frankel, G.S, J. Electrochem. Soc., 1998, vol. 145, p. 2186.

    Article  Google Scholar 

  30. Meng, G., Li, Y., and Wang, F, Electrochim. Acta, 2006, vol. 51, p. 4277.

    Article  Google Scholar 

  31. Lakatos-Varshyi, M., Falkenberg, F., and Olefjord, I, Electrochim. Acta, 1998, vol. 43, p. 187.

    Article  Google Scholar 

  32. Igual Munoz, A, Garcia Anton, J., and Guinon, J.L., Corros. Sci., 2007, vol. 49, p. 3200.

    Article  Google Scholar 

  33. Galvele, J.R, Electrochem. Sci. Technol., 1976, vol. 123, p. 464.

    Article  Google Scholar 

  34. Ameer, M.A., Fekry, A.M., and Heakal, F, Electrochim. Acta, 2004, vol. 50, p. 43.

    Article  Google Scholar 

  35. Metikoš-Huković, M., Babić, R., Grubać, Z., et al, Corros. Sci., 2011, vol. 53, p. 2176.

    Article  Google Scholar 

  36. Fattah-alhosseini, A., Saatchi, A., Golozar, M.A., et al, J. Appl. Electrochem., 2010, vol. 40, p. 457.

    Article  Google Scholar 

  37. Fattah-alhosseini, A., Taheri Shoja, S., Heydari Zebardast, B., et al., Int. J. Electrochem., 2011, vol. 2011, Art. ID 152143.

  38. Fattah-alhosseini, A. and Farahani, H, Mater. Sci. Eng., 2013, vol. 10, p. 31.

    Google Scholar 

  39. Freire, L., Carmezim, M.J., Ferreira, M.G.S., et al, Electrochim. Acta, 2011, vol. 56, p. 5280.

    Article  Google Scholar 

  40. Escrivà-Cerdán, C., Blasco-Tamarit, E., García-García, D.M., et al, Electrochim. Acta, 2012, vol. 80, p. 248.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Sanati.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanati, A., Raeissi, K. & Edris, H. Investigation of the corrosion behavior of cathodic arc evaporated stainless steel coating in 3.5% NaCl. Prot Met Phys Chem Surf 53, 902–909 (2017). https://doi.org/10.1134/S2070205117050197

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205117050197

Navigation