Skip to main content
Log in

Corrosion and anodic oxidation of copper in 1-butyl-3-methylimidazolium bromide–copper(II) bromide ionic liquid

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Using the gravimetric and polarization methods, the corrosion behavior of copper in 1-butyl-3-methylimidazolium bromide (BMImBr) ionic liquid in its pure state and with additions of CuBr2 (from 0.4 to 1.2 mol kg–1) has been investigated. It is found that the corrosion in naturally aerated BMImBr ionic liquid is accompanied by oxygen depolarization. Copper dibromide in BMImBr–CuBr2 ionic liquid plays the role of an oxidant, and the rate of copper corrosion in this case is higher by about an order of magnitude than for the pure ionic liquid. The method of cyclic voltammetry shows that the anodic dissolution of copper in BMImBr–CuBr2 ionic liquid proceeds via the EC mechanism. It is shown that the chemical-reaction rate of dissolving the surface layer and the rate of copper corrosion (according to gravimetric and polarization data) are comparable. Copper corrosion in the studied ionic liquid is accompanied by the effect of surface polishing, as is confirmed by the atomic force microscopy and profilography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Best, A.S., Bhatt, A.I., and Hollenkamp, A.F., J. Electrochem. Soc., 2010, vol. 157, no. 8, p. A903.

    Article  Google Scholar 

  2. Seki, S., Kobayashi, Y., Miyashiro, H., et al., Electrochem. Solid-State Lett., 2005, vol. 8, no. 11, p. A577.

    Article  Google Scholar 

  3. Tsunashima, K. and Sugiya, M., Electrochem. Solid-State Lett., 2008, vol. 11, no. 2, p. A17.

    Article  Google Scholar 

  4. Kurig, H., Vestli, M., and Jänes, A., Electrochem. Solid-State Lett., 2011, vol. 14, no. 8, p. A120.

    Article  Google Scholar 

  5. Matsumoto, K., Takahashi, K., Senda, A., et al., ECS Trans., 2010, vol. 33, no. 7, p. 421.

    Article  Google Scholar 

  6. Largeot, C., Taberna, P.L., Gogotsi, Y., and Simon, P., Electrochem. Solid-State Lett., 2011, vol. 14, no. 12, p. A174.

    Article  Google Scholar 

  7. Endres, F., ChemPhysChem, 2002, vol. 3, p. 144.

    Article  Google Scholar 

  8. Endres, F., MacFarlane, D., Abbott, A., Electrodeposition from Ionic Liquids, Weinheim: Wiley-VCH, 2008. doi 10.1002/9783527622917.ch4

    Book  Google Scholar 

  9. Perissi, I., Caporali, S., Fossati, A., and Lavacchi, A., in Advances in Chemistry Research, New York: Nova Science Publ., 2011, vol. 6, chap. 12, p. 315.

    Google Scholar 

  10. Perissi, I., Bardi, U., Caporali, S., and Lavacchi, A., Corros. Sci., 2006, vol. 48, p. 2349.

    Article  Google Scholar 

  11. Bardi, U., Caporali, S., Ghezzi, F., et al., Proc. European Conference on Applications of Surface and Interface Analysis, ECASIA’05, Vienna, Sept. 25–30, 2005, Abstr. 1088.

    Google Scholar 

  12. Tolstoguzov, A.B., Bardi, U., and Chenakin, S.P., Bull. Rus. Acad. Sci.: Phys., 2008, vol. 72, p. 605.

    Google Scholar 

  13. Arenas, M.F. and Reddy, R.G., J. Min. Metall., Sect. B, 2003, vol. 39, p. 81.

    Article  Google Scholar 

  14. Jiménez, A.E., Bermúdez, M.D., Carrión, F.J., and Martínez-Nicolás, G., Wear, 2006, vol. 261, p. 347.

    Article  Google Scholar 

  15. Uerdingen, M., Treber, C., Balser, M., Schmitt, G., and Werner, C., Green Chem., 2005, vol. 7, p. 321.

    Article  Google Scholar 

  16. Grishina, E.P., Pimenova, A.M., and Ramenskaya, L.M., Russ. J. Electrochem., 2009, vol. 45, p. 1358.

    Article  Google Scholar 

  17. Grishina, E.P., Pimenova, A.M., Kudryakova, N.O., and Ramenskaya, L.M., Russ. J. Electrochem., 2012, vol. 48, p. 1166.

    Article  Google Scholar 

  18. Delimarskii, Yu.K., Elektrokhimiya ionnykh rasplavov (Electrochemistry of Ionic Melts), Moscow: Metallurgiya, 1978.

    Google Scholar 

  19. Ramenskaya, L.M., Grishina, E.P., Pimenova, A.M., and Gruzdev, M.S., Russ. J. Phys. Chem. A, 2008, vol. 82, p. 1098.

    Article  Google Scholar 

  20. Grishina, E.P., Kudryakova, N.O., Pimenova, A.M., and Ramenskaya, L.M., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2010, vol. 53, no. 6, p. 103.

    Google Scholar 

  21. Ionic Liquids in Synthesis, Wasserscheid, P. and Welton, T., Eds., Weinheim: Wiley-VCH, 2003.

  22. Yang, J.-Z., Tian, P., He, L.-L., and Xu, W.-G., Fluid Phase Equilib., 2003, vol. 204, p. 295.

    Article  Google Scholar 

  23. Csihony, S., Mehdi, H., and Horvath, I.T., Green Chem., 2001, vol. 3, p. 307.

    Article  Google Scholar 

  24. Hsiu, S.-I., Huang, J.-F., Sun, I.-W., et al., Electrochim. Acta, 2002, vol. 47, p. 4367.

    Article  Google Scholar 

  25. Matsumoto, K., Hagiwara, R., and Ito, Y., J. Fluorine Chem., 2002, vol. 115, p. 133.

    Article  Google Scholar 

  26. Dyson, P.J., Transition Met. Chem., 2002, vol. 27, p. 353.

    Article  Google Scholar 

  27. Sasaki, T., Taba, M., Zhong, C., Kume, T., and Iwasawa, Y., J. Mol. Catal. A: Chem., 2008, vol. 279, p. 200.

    Article  Google Scholar 

  28. Sorokin, V.I. and Shestopalova, A.O., Zashch. Met., 1995, vol. 31, p. 331.

    Google Scholar 

  29. Kinevskii, A.I., Zh. Prikl. Khim., 1955, vol. 28, p. 1113.

    Google Scholar 

  30. Grishina, E.P., Ramenskaya, L.M., Vladimirova, T.V., and Pimenova, A.M., Russ. J. Appl. Chem., 2007, vol. 80, p. 248.

    Article  Google Scholar 

  31. Kumełan, J., Perez-Salado Kamps, Á., Urukova, I., Tuma, D., and Maurer, G., J. Chem. Thermodyn., 2005, vol. 37, p. 595.

    Article  Google Scholar 

  32. Khan, A., Lu, X., Aldous, L., and Zhao, C., J. Phys. Chem. C, 2013, vol. 117, p. 18334.

    Article  Google Scholar 

  33. Skorchelletti, V.V., Teoreticheskie osnovy korrozii metallov (Theoretical Foundations of Metals Corrosion), Leningrad: Khimiya, 1973.

    Google Scholar 

  34. Grishina, E.P., Udalova, A.M., and Rumyantsev, E.M., Russ. J. Electrochem., 2002, vol. 38, p. 1041.

    Article  Google Scholar 

  35. Grishina, E.P., Galanin, S.I., and Ivanova, O.A., Russ. J. Appl. Chem., 2004, vol. 77, p. 1283.

    Article  Google Scholar 

  36. Grishina, E.P. and Rumyantsev, E.M., Russ. J. Electrochem., 2001, vol. 37, p. 409.

    Article  Google Scholar 

  37. Grilikhes, S.Ya., Obezzhirivanie, travlenie i polirovanie metallov (Degreasing, Etching and Polishing of Metals), Leningrad: Mashinostroenie, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Grishina.

Additional information

Original Russian Text © E.P. Grishina, N.O. Kudryakova, A.M. Pimenova, 2017, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2017, Vol. 53, No. 4, pp. 395–402.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishina, E.P., Kudryakova, N.O. & Pimenova, A.M. Corrosion and anodic oxidation of copper in 1-butyl-3-methylimidazolium bromide–copper(II) bromide ionic liquid. Prot Met Phys Chem Surf 53, 663–669 (2017). https://doi.org/10.1134/S2070205117020113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205117020113

Navigation