Skip to main content
Log in

Electrochemical corrosion of Ti6Al4V, Ti and AISI 316L SS after immersed in concentrated simulated body fluid

  • New Materials and Coatings in Biology and Medicine
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The biomimetic method is used to obtain hydroxyapatite (HAP) coatings on Ti6Al4V, Ti and AISI 316L SS substrates. These substrates with different pretreatment surface operations (HNO3, anodic polarization, base-acid) were immersed in concentrated simulated body fluids (SBF) for different days at physiologic conditions of 37°C, initial pH of 7.4. Then the corrosion behaviours of substrates after immersion in concentrated SBF were examined by electrochemical methods in Ringer’s and 0.9 wt% NaCl solutions at a temperature of 37°C. Ions concentrations and pH analyses were carried out after incubation in concentrated SBF. After immersion in SBF for different days, the surface morphology remains almost unchanged and no apatite formation is observed. Corrosion currents of substrates increased after immersion. Ions concentrations and pH values were shown variability according to soaking time and pretreatment surface operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bharati, S., Sinha, M., and Basu, D., Bull. Mater. Sci., 2005, vol. 28, p. 617.

    Article  Google Scholar 

  2. Barrere, F., van Blitterswijk, C., de Groot, K., and Layrolle, P., Biomaterials, 2002, vol. 23, p. 2211.

    Article  Google Scholar 

  3. Barriere, F., Layrolle, P., van Blitterswijk, C., et al., Bone, 1999, vol. 25, p. 107S.

    Article  Google Scholar 

  4. Bigi, A., Boanini, E., Bracci Facchini, A., et al., Biomaterials, 2005, vol. 26, p. 4085.

    Article  Google Scholar 

  5. Faure, J., Balamurugan, A., Benhayoune, H., et al., Mater. Sci. Eng.: C, 2009, vol. 29, p. 1252.

    Article  Google Scholar 

  6. Anawati Tanigawa, H., Asoh, H., Ohno, T., et al., Corros. Sci., 2013, vol. 70, p. 212.

    Article  Google Scholar 

  7. Jankovic, A., Erakovic, S., Mitric, M., et al., J. Alloys Compd., 2014, vol. 624, p. 148.

    Article  Google Scholar 

  8. Mohseni, E., Zalnezhad, E., and Bushroa, A., Int. J. Adhes. Adhes., 2014, vol. 48, p. 238.

    Article  Google Scholar 

  9. Pasinli, A., Yuksel, M., Celik, E., et al., Acta Biomater., 2010, vol. 6, p. 2282.

    Article  Google Scholar 

  10. Stoch, A., Jastrzebski, W., Brozek, A., et al., J. Mol. Struct., 2000, vol. 555, p. 375.

    Article  Google Scholar 

  11. Yanovska, A., Kuznetsov, V., Stanislavov, A., et al., Surf. Coat. Technol., 2011, vol. 205, p. 5324.

    Article  Google Scholar 

  12. Yoon Il-Kyu, Hwang Ji-Young, Jang Won-Cheoul, et al., Appl. Surf. Sci., 2014, vol. 301, p. 401.

    Article  Google Scholar 

  13. Sutha, S., Kavitha, K., Karunakaran, G., and Rajendran, V., Mater. Sci. Eng.: C, 2013, vol. 33, p. 4046.

    Article  Google Scholar 

  14. Swetha, M., Sahithi, K., Moorthi, A., et al., Int. J. Biol. Macromol., 2010, vol. 47, p. 1.

    Article  Google Scholar 

  15. Cai, Q., Feng, Q., Liu, H., and Yang, X., Mater. Lett., 2013, vol. 91, p. 275.

    Article  Google Scholar 

  16. McLeod, K., Kumar, S., Dutta, N.K., et al., Appl. Surf. Sci., 2010, vol. 256, p. 7178.

    Article  Google Scholar 

  17. Minh, D.P., Nzihou, A., and Sharrock, P., Mater. Res. Bull., 2014, vol. 60, p. 292.

    Article  Google Scholar 

  18. Mohseni, E., Zalnezhad, E., and Bushroa, A.R., Int. J. Adhes. Adhes., 2014, vol. 48, p. 238.

    Article  Google Scholar 

  19. Sadjadi, M.S., Meskinfam, M., Sadeghi, B., et al., Mater. Chem. Phys., 2010, vol. 124, p. 217.

    Article  Google Scholar 

  20. Štulajterova, R. and Medvecky, L., Colloids Surf., A, 2008, vol. 316, p. 104.

    Article  Google Scholar 

  21. Hashizume, M., Nagasawa, Y., Suzuki, T., et al., Colloids Surf., B, 2011, vol. 84, p. 545.

    Article  Google Scholar 

  22. Gao, F., Xu, C., Hu, H., et al., Mater. Lett., 2015, vol. 138, p. 25.

    Article  Google Scholar 

  23. Gu, Y.W., Khor, K.A., and Cheang, P., Biomaterials, 2003, vol. 24, p. 1603.

    Article  Google Scholar 

  24. Chu, C.L., Pu, Y.P., Yin, L.H., et al., Mater. Lett., 2006, vol. 60, p. 3002.

    Article  Google Scholar 

  25. Zhang, Q. and Leng, Y., Biomaterials, 2005, vol. 26, p. 3853.

    Article  Google Scholar 

  26. Costa, D.O., Allo, B.A., Klassen, R., et al., Langmuir, 2012, vol. 28, p. 3871.

    Article  Google Scholar 

  27. Colovic, B., Jokanovic, V., Jokanovic, B., and Jovic, N., Ceram. Int., 2014, vol. 40, p. 6949.

    Article  Google Scholar 

  28. Habibovic, P., Barrère, F., van Blitterswijk, C.A., et al., J. Am. Ceram. Soc., 2002, vol. 85, p. 517.

    Article  Google Scholar 

  29. Chen, X., Li, Y., Hodgson, P.D., and Wen, C., Mater. Sci. Eng.: C, 2009, vol. 29, p. 165.

    Article  Google Scholar 

  30. Gu, Y.W., Tay, B.Y., Lim, C.S., and Yong, M.S., Biomaterials, 2005, vol. 26, p. 6916.

    Article  Google Scholar 

  31. Jalota, S., Bhaduri, S.B., and Tas, A.C., Mater. Sci. Eng.: C, 2008, vol. 28, p. 129.

    Article  Google Scholar 

  32. Holzwarth, J.M. and Ma, P.X., Biomaterials, 2011, vol. 32, p. 9622.

    Article  Google Scholar 

  33. Tas, A.C., J. Eur. Ceram. Soc., 2000, vol. 20, p. 2389.

    Article  Google Scholar 

  34. Kokubo, T. and Takadama, H., Biomaterials, 2006, vol. 27, p. 2907.

    Article  Google Scholar 

  35. Jonasova, L., Muüller, F.A., Helebrant, A., et al., Biomaterials, 2004, vol. 25, p. 1187.

    Article  Google Scholar 

  36. Khor, K.A., Li, H., Cheang, P., and Boey, S.Y., Biomaterials, 2003, vol. 24, p. 723.

    Article  Google Scholar 

  37. Saiz, E., Goldman, M., Gomez-Vega, J.M., et al., Biomaterials, 2002, vol. 23, p. 3749.

    Article  Google Scholar 

  38. Ning, C.Q. and Zhou, Y., Biomaterials, 2002, vol. 23, p. 2909.

    Article  Google Scholar 

  39. Büyüksagis, A., Çiftci, N., Ergün, Y., and Kayali, Y., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, p. 670.

    Article  Google Scholar 

  40. Lin, C.M. and Yen, S.K., Mater. Sci. Eng.: C, 2006, vol. 26, p. 54.

    Article  Google Scholar 

  41. Wei, D. and Zhou, Y., Ceram. Int., 2009, vol. 35, p. 2343.

    Article  Google Scholar 

  42. Forsgren, J., Svahn, F., Jarmar, T., and Engqvist, H., Acta Biomater., 2007, vol. 3, p. 980.

    Article  Google Scholar 

  43. Ciobanu, G., Carja, G., and Ciobanu, O., Surf. Coat. Technol., 2008, vol. 202, p. 2467.

    Article  Google Scholar 

  44. Lluch, A.V., Ferrer, G.G., and Pradas, M.M., Colloids Surf., B, 2009, vol. 70, p. 218.

    Article  Google Scholar 

  45. Kannan, S., Balamurugan, A., and Rajeswari, S., Electrochim. Acta, 2004, vol. 49, p. 2395.

    Article  Google Scholar 

  46. Krupa, D., Baszkiewicz, J., Sobczak, J.W., et al., J. Mater. Process. Technol., 2003, vol. 144, p. 158.

    Article  Google Scholar 

  47. Balamurugan, A., Balossier, G., Kannan, S., et al., Ceram. Int., 2007, vol. 33, p. 605.

    Article  Google Scholar 

  48. Ding, S.J., Huang, T.H., and Kao, C.T., Surf. Coat. Technol., 2003, vol. 165, p. 248.

    Article  Google Scholar 

  49. Rigo, E.C.S., Boschi, A.O., Yoshimoto, M., et al., Mater. Sci. Eng.: C, 2004, vol. 24, p. 647.

    Article  Google Scholar 

  50. Jalota, S., Bhaduri, S., and Tas, A., Mater. Sci. Eng.: C, 2007, vol. 27, p. 432.

    Article  Google Scholar 

  51. Müller, L. and Müller, F., Acta Biomater., 2006, vol. 2, p. 181.

    Article  Google Scholar 

  52. Xiao, X.F., Tian, T., Liu, R.F., and She, H., Mater. Chem. Phys., 2007, vol. 106, p. 27.

    Article  Google Scholar 

  53. Shi, Y., Downes, M., Xie, W., et al., Genes Dev., 2001, vol. 15, p. 1140.

    Article  Google Scholar 

  54. Bohner, M. and Lemaitre, J., Biomaterials, 2009, vol. 30, p. 2175.

    Article  Google Scholar 

  55. Oliveira, A.L., Costa, S.A., Sousa, R.A., and Reis, R.L., Acta Biomater., 2009, vol. 5, p. 1626.

    Article  Google Scholar 

  56. Sánchez-Salcedo, S., Balas, F., Izquierdo-Barba, I., and Vallet-Regi, M., Acta Biomater., 2009, vol. 5, p. 2738.

    Article  Google Scholar 

  57. Li, F., Feng, Q.L., Cui, F.Z., et al., Surf. Coat. Technol., 2002, vol. 154, p. 88.

    Article  Google Scholar 

  58. Chou, Y.F., Chiou, W.A., Xu, Y., et al., Biomaterials, 2004, vol. 25, p. 5323.

    Article  Google Scholar 

  59. Uchida, M., Kim, H.M., Kokubo, T., et al., J. Biomed. Mater. Res., Part A, 2003, vol. 64, p. 164.

    Article  Google Scholar 

  60. Escada, A.L.A., Rodrigues, D., and Machado, J.P.B., Surf. Coat. Technol., 2010, vol. 205, p. 383.

    Article  Google Scholar 

  61. Müller, F.A., Müller, L., Caillard, D., and Conforto, E., J. Cryst. Growth, 2007, vol. 304, p. 464.

    Article  Google Scholar 

  62. Sengil, I.A., Korozyon, I.T.Ü. Sakarya Mühendislik Fakültesi Matbaasi, 1992, vol. 1501, p. 494.

    Google Scholar 

  63. Sul, Y.T., Johansson, C.B., Petronis, S., et al., Biomaterials, 2002, vol. 23, p. 491.

    Article  Google Scholar 

  64. Nagayama, M. and Kawamura, S., Electrochim. Acta, 1967, vol. 12, p. 1109.

    Article  Google Scholar 

  65. Mhaede, M., Ahmed, A., Wollmann, M., and Wagner, L., Mater. Sci. Eng.: C, 2015, vol. 50, p. 24.

    Article  Google Scholar 

  66. Barbucci, A., Delucchi, M., Panizza, M., et al., J. Alloys Compd., 2001, vols. 317–318, p. 607.

    Article  Google Scholar 

  67. Lu, X., Zhao, Z., and Leng, Y., Mater. Sci. Eng.: C, 2007, vol. 27, p. 70.

    Article  Google Scholar 

  68. Kokubo, T., Thermochim. Acta, 1996, vols. 280–281, p. 479.

    Article  Google Scholar 

  69. Karanjai, M., Sundaresan, R., Mohan, T.R.R., and Kashyap, B.P., Mater. Sci. Eng.: C, 2008, vol. 28, p. 1401.

    Article  Google Scholar 

  70. Amin, M.S., Randeniya, L.K., Bendavid, A., et al., Diamond Relat. Mater., 2012, vol. 21, p. 42.

    Article  Google Scholar 

  71. Chi, M.H., Tsou, H.K., Chung, C.J., and He, J.L., Thin Solid Films, 2013, vol. 549, p. 98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Buyuksagis.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buyuksagis, A. Electrochemical corrosion of Ti6Al4V, Ti and AISI 316L SS after immersed in concentrated simulated body fluid. Prot Met Phys Chem Surf 52, 695–703 (2016). https://doi.org/10.1134/S2070205116040067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116040067

Navigation