Skip to main content
Log in

Chemisorption model of electrochemical passivity of metals and thermodynamic calculation of the flade potential of metals Ni and Cr taking into account their surface Gibbs energy

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

A model of the chemisorption passivity of metals based on the consideration of equality of the electrochemical potentials of the metal ion at the interfaces between the bulk of a metal, the monoatomic surface layer (SL) of a metal, and the surface metal oxide has been proposed. Thereby, unlike the Vetter model, this approach takes into account the occurrence of the Galvani potential of the metal atoms (ions) in the SL in the form of the surface Gibbs energy ΔG S(hkl) of a particular crystal face. On this basis, a formula of the Flade potential E F(S) of a metal has been derived; this formula, along with the chemical Gibbs energy of formation of oxides, makes allowance for the ΔG S(hkl) value (of a low-index face of the metal). Normal potential E 0F(S) (a pH of 0) has been calculated using the data of the first-principle calculation of the surface energy of metals. The calculated E 0F(S) values of 0.46 and−0.19 V for Ni and Cr, respectively, are in good agreement with the literature data. The calculated E F(S) values and the critical points in the anodic curves of passivation and activation of nickel in a 0.5 M H2SO4 solution and in the presence of KSCN additives have been compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vetter, K., Electrochemical Kinetics: Theoretical and Experimental Aspects, New York: Academic, 1967.

    Google Scholar 

  2. Flade, F., Z. Phys. Chem., 1911, vol. 76, p. 513.

    Google Scholar 

  3. Kolotyrkin, Ya.M., Z. Elektroch., 1958, Bd. 62, S. 664.

    Google Scholar 

  4. Shvabe, K., Electrochim. Acta, 1960, vol. 3, p. 186.

    Article  Google Scholar 

  5. Uhlig, H.H., Corrosion and Corrosion Control, New York: Wiley, 1962.

    Google Scholar 

  6. Kabanov, B.N., Elektrokhimiya metallov i adsorbtsiya (Electrochemistry of Metals and Adsorption), Moscow: Nauka, 1966.

    Google Scholar 

  7. Erlikh, B.V., Dokl. Akad. Nauk SSSR, 1942, vol. 37, p. 258.

    Google Scholar 

  8. Andreev, Yu.Ya., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 1, p. 42.

    Article  Google Scholar 

  9. Andreev, Yu.Ya., Elektrokhimiya metallov i splavov (Electrochemistry of Metals and Alloys), Moscow: Vysshee Obraz. i Nauka., 2015.

    Google Scholar 

  10. Vitos, L., Ruban, A.V., Skriver, H.L., and Kollar, J., Surf. Sci., 1998, vol. 411, p. 186.

    Article  Google Scholar 

  11. Andreev, Y.Y., Prot. Met. Phys. Chem. Surf., 2009, vol. 45, no. 6, p. 669-674.

    Article  Google Scholar 

  12. Andreev, Y.Y., Bobkov, T.V., Dub, A.V., and Podgornyi, D.A., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 4, p. 444.

    Article  Google Scholar 

  13. Kaesche, H., Die Korrosion der Metalle. PhysikalischChemische Prinzipien und Aktuelle Probleme, Berlin: Springer-Verlag, 1966.

    Book  Google Scholar 

  14. Skapski, A.S., J. Chem. Phys., 1948, vol. 16, p. 386.

    Article  Google Scholar 

  15. Roberts, M.W. and McKee, C.S., Chemistry of the Metal-Gas Interface, Oxford: Clarendon, 1978.

    Google Scholar 

  16. Andreev, Yu.Ya., Russ. J. Phys. Chem. A, 1998, vol. 72, no. 3, p. 447.

    Google Scholar 

  17. Andreev, Yu.Ya., Electrochim. Acta, 1998, vol. 43, p. 2627.

    Article  Google Scholar 

  18. Andreev, Yu.Ya. and Kiselev, D.A., Phil. Mag., 2013, vol. 93, p. 2401.

    Article  Google Scholar 

  19. Andreev, Yu.Ya., Russ. J. Phys. Chem. A, 2005, vol. 79, no. 2, p. 179.

    Google Scholar 

  20. Thomas, J.M. and Thomas, W.J., Principles and Practice of Heterogeneous Catalysis, Weinheim: VCH, 1997.

    Google Scholar 

  21. Conway, B.E., in Electrochemistry–The Past Thirty Years and the Next Thirty Years, Bloom, H. and Gutmann, F., Eds., New York: Plenum, 1977.

  22. Wickes, C.E. and Block, F.E., Thermodynamic Properties of 65 Elements–Their Oxides, Halides, Carbides, and Nitrides, Bureau Mines Bull. 605, Washington: US Gov. Print. Off., 1963.

    Google Scholar 

  23. Hoppe, H.-W. and Strehblow, H.-H., Surf. Interface Anal., 1989, vol. 14, p. 121.

    Article  Google Scholar 

  24. Haupt, S. and Strehblow, H.-H., J. Electroanal. Chem., 1987, vol. 228, p. 365.

    Article  Google Scholar 

  25. Sury, P., Corros. Sci., 1976, vol. 16, p. 879.

    Article  Google Scholar 

  26. Kesten, M. and Feller, H.G., Electrochim. Acta, 1971, vol. 16, p. 763.

    Article  Google Scholar 

  27. Marshakov, I.K., Zotova, E.E., and Protasova, I.V., Prot. Met. Phys. Chem. Surf., 2004, vol. 40, no. 3, p. 220–225.

    Google Scholar 

  28. Sato, N. and Okamoto, G., J. Electrochem. Soc., 1963, vol. 110, p. 605.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Ya. Andreev.

Additional information

Original Russian Text © Yu.Ya. Andreev, T.V. Bobkov, 2015, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2015, Vol. 51, No. 5, pp. 456–465.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, Y.Y., Bobkov, T.V. Chemisorption model of electrochemical passivity of metals and thermodynamic calculation of the flade potential of metals Ni and Cr taking into account their surface Gibbs energy. Prot Met Phys Chem Surf 51, 730–739 (2015). https://doi.org/10.1134/S2070205115050032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205115050032

Keywords

Navigation