Skip to main content
Log in

Microstructures and corrosion mechanism of AISI 304L stainless steel irradiated by high current pulsed electron beam

  • Physicochemical Problems of Materials Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

AISI 304L austenite stainless steel was irradiated by a high-current pulsed electron beam (HCPEB) source in different process. The microstructures were investigated in detail by electron microscopy. The relationship between corrosion resistance and the microstructures has been established. Our experimental results suggest that much abundant defect structures were formed within the irradiated surface which promoted the formation of a compact and thick passive layer during the process of corrosion experiment in simulated sea water. This passive layer effectively prevented corrosive anionic species from passing through the surface oxidation layer and delayed the corrosion process, leading to the improvement of irradiated materials’ corrosion performance. However, the craters on the treated surfaces may be turn into new active points on the metal surface which favored local pitting. Our experimental results demonstrate the potential of proper HCPEB processing for improving the corrosion resistance of metallic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proskurovsky, D.I., Rothtein, V.P., Ozur, G.E., et al., Surf. Coat. Technol., 2000, vol. 125, p. 49.

    Article  Google Scholar 

  2. Qin, Y., Wang, X.G., Dong, C., et al., Acta Phys. Sin., 2003, vol. 52, p. 3043.

    Google Scholar 

  3. Li, Y., Cai, J., Lv, P., et al., Acta Phys. Sin., 2002, vol. 61, p. 056105–1.

    Google Scholar 

  4. Grosdidier, T., Zou, J.X., Wu, J., et al., Adv. Mater. Sci. Technol., 2009, vol. 614, p. 99.

    Google Scholar 

  5. Cheng D.Q., Guan Q.F., Zhu J. et al. // Acta Phys. Sin. 2009. V. 58. P. 7300.

    Google Scholar 

  6. Ivanov, Y.F., Gromov, V.E., and Konovalov, S.V., Arab. J. Sci. Eng., 2009, vol. 34, p. 219.

    Google Scholar 

  7. Hao, S.Z., Zhang, X.D., Mei, X.X., et al., Mater. Lett., 2008, vol. 62, p. 414.

    Article  Google Scholar 

  8. Zou, J.X., Zhang, K.M., Dong, C., et al., Appl. Phys. Lett., 2006, vol. 89, p. 041913.

    Article  Google Scholar 

  9. Zou, J.X., Zhang, K.M., Hao, S.Z., et al., Thin Solid Films, 2010, vol. 519, p. 1404.

    Article  Google Scholar 

  10. Guan, Q.F., Zou, Y., Zhang, Z.Q., et al., J. Jilin Univ. (in press).

  11. Ryan, M.P., Williams, D.E., Chater, R.J., et al., Nature, 2002, vol. 415, p. 770.

    Article  Google Scholar 

  12. Schmuki, P., Hildrbrand, H., Friedrich, A., and Virtanen, S., Corr. Sci., 2005, vol. 47, p. 1239.

    Article  Google Scholar 

  13. Shulov, V.A. and Nochovaya, N.A., Phys. Res., 1995, vol. 148, p. 154.

    Google Scholar 

  14. Hansen, N., Metal. Mater. Trans., Ser. A, 2001, V. 32, p. 2917.

    Article  Google Scholar 

  15. Sencer, B.H., Maloy, S.A., and Gray, G.T., Acta Mater., 2005, vol. 53, p. 3293.

    Article  Google Scholar 

  16. Kiritani, M. and Yoshiie, T., J. Nucl. Mater., 1994, vols. 212–215, p. 192.

    Article  Google Scholar 

  17. Kiritani, M., Mater. Chem. Phys., 1997, vol. 50, p. 133.

    Article  Google Scholar 

  18. Pogrebnjak, A.D., Mikhaliov, A.D., Progrebnjak, N.A., et al., Phys. Lett., Ser. A, 1998, vol. 241, p. 357.

    Article  Google Scholar 

  19. Gurappa, I., Mater. Charact., 2002, vol. 49, p. 73.

    Article  Google Scholar 

  20. Norlin, A., Pan, J., and Leygraf, C., Biomol. Eng., 2002, vol. 19, p. 67.

    Article  Google Scholar 

  21. Szummer, A., Janik-Czachor, M., and Hofmann, S., Mater. Chem. Phys., 1993, vol. 34, p. 181.

    Article  Google Scholar 

  22. Williams, D.E., Mohiuddin, T.F., and Zhu, Y.Y., J. Electrochem. Soc., 1998, vol. 145, p. 2664.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Guan.

Additional information

Chinese Natural Science Foundation (Grant no. U1233111, 50671042), Open project of key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education (DP1051102).

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Cai, J., Ji, L. et al. Microstructures and corrosion mechanism of AISI 304L stainless steel irradiated by high current pulsed electron beam. Prot Met Phys Chem Surf 50, 650–658 (2014). https://doi.org/10.1134/S2070205114050207

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205114050207

Keywords

Navigation