Skip to main content
Log in

Planar supramolecular systems based on geometrical isomers of crown-containing oligothiophenes

  • Molecular and Supramolecular Structures at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The properties of ultrathin films of two geometric isomers of oligothiophene derivatives containing two crowned styryl fragments in 2- (I) or 3- (II) positions of thiophene rings (Fig. 1) are studied in this work. The ability of these compounds to form stable monolayers at the air/water interface is shown. The structural organization of crown-substituted oligothiophenes in monolayers is determined by the π-π-stacking interaction of hydrophobic styrylthiophene fragments and interaction of hydrophilic macrocycles with the water subphase. Analysis of ultrathin film physicochemical characteristics has shown that the difference in the structure of oligothiophene molecules leads to the formation of distinct monolayer architectures with various electrochemical and optical characteristics. Two types of aggregates (H and J) are generated in monolayers formed from different geometrical isomers at the air/water interface. The effect of barium cation presence in the subphase on the oligomer aggregation in monolayer is discussed. The phase diagrams characterizing the behavior from two-dimensional mixtures of studied crown-substituted oligothiophenes and amphiphilic spreader are plotted basing on compression isotherms accompanied by absorbance and fluorescence spectra of monolayers of different composition. The ability to fine tune the emitted radiation parameters is demonstrated. The obtained results show the efficiency of application of geometrical isomers for investigation of the fundamental “structure-property” ratio of planar supramolecular systems, which is important for organic optics and electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freek J. M. Hoeben, Pascal Jonkheijm, E. W. Meijer, and Albertus P. H. J. Schenning, Chem. Rev., 2005, 105(4), pp. 1491–1546.

    Article  Google Scholar 

  2. Wang, C., Dong, H., Hu, W., et al., Chem. Rev., 2012, vol. 112, p. 2208.

    Article  Google Scholar 

  3. Wurthner, F., Angew. Chem., Int. Ed. Engl., 2001, vol. 40, p. 1037.

    Article  Google Scholar 

  4. Katz, H., Dodabalapur, V., Torsi, L., et al., Chem. Mater., 1995, vol. 7, p. 2238.

    Article  Google Scholar 

  5. Fichou, D., Dumarcher, V., and Nunzi, J.-M., Opt. Mater., 1999, vol. 12, p. 255.

    Article  Google Scholar 

  6. Huisman, C.L., Huijser, A., Donker, H., et al., Macromolecules, 2004, vol. 37, p. 5557.

    Article  Google Scholar 

  7. Lim, S.-T. and Shin, D.-M., Synth. Met., 2001, vol. 117, p. 229.

    Article  Google Scholar 

  8. Era, M., Yoneda, S., Sano, T., et al., Thin Solid Films, 2003, vol. 438.

  9. Loi, M.A., Da, ComoE., Dinelli, F., et al., Nat. Mater, 2005, vol. 4, p. 81.

    Article  Google Scholar 

  10. Sullivan, J.T., Harrison, K.E., Mizzell, J.P., et al., Langmuir, 2000, vol. 16, p. 9797.

    Article  Google Scholar 

  11. Singhal, R., Chaubey, A., Kaneto, K., et al., Biotechnol. Bioeng., 2004, vol. 85, p. 277.

    Article  Google Scholar 

  12. Ochiai, K., Rikukawa, M., and Sanui, K., Chem. Commun., 1999, vol. 867.

  13. Dimitrakopolous, C.D. and Malenfant, P.R.L., Adv. Mater., 2002, vol. 14, p. 99.

    Article  Google Scholar 

  14. Gamier, F., Horowitz, G., Peng, X., and Fichou, D., Adv. Mater., 1990, vol. 2, p. 592.

    Article  Google Scholar 

  15. Gamier, F., Hajlaoui, R., Yassar, A., et al., Science, 1994, vol. 1684.

  16. Ostoja, P., Guerri, S., Rossini, S., et al., Synth. Met., 1993, vol. 54, p. 447.

    Article  Google Scholar 

  17. Dodabalapur, A., Torsi, L., and Katz, H., Science, 1995, vol. 268, p. 270.

    Article  Google Scholar 

  18. Brabec, C., Dyakonov, V., Parisi, J., et al., Organic photovoltaics concepts and realization, Heidelberg: Springer-Verlag, 2003.

    Book  Google Scholar 

  19. Vannikov, A.V., Ross. Khim. Zh., 2001, vol. 45, no. 5–6, p. 41.

    Google Scholar 

  20. Simon, J. and Andre, J.-J., Molecular Semiconductors. Berlin: Springer-Verlag, 1985.

  21. Maltsev, E.I., Lypenko, D.A., Brusentseva, M.A., et al., High Energy Chem., 2008, vol. 42, No. 4, p. 67.

    Google Scholar 

  22. Braun, D., Mater. Today, 2002, vol. 5, no. 6, p. 32.

    Article  Google Scholar 

  23. Friend, R.H., Gymer, R.W., Holmes, A.B., et al., Nature, 1999, vol. 397, p. 121.

    Article  Google Scholar 

  24. Yurre, T.A., Rudaya, L.I., Klimova, N.V. et al., Semiconductors, 2003, vol. 37, p. 835.

    Google Scholar 

  25. Geiger, F., Stoldt, M., Schweizer, H., et al., Adv. Mater., 1993, vol. 5, p. 922.

    Article  Google Scholar 

  26. Uchiyama, K., Akimichi, H., Hotta, S., et al., Synth. Met., 1994, vol. 63, p. 57.

    Article  Google Scholar 

  27. Marks, R., Biscarini, F., Zamboni, R., et al., Europhys. Lett., 1995, vol. 32, p. 523.

    Article  Google Scholar 

  28. Horowitz, G., Delannoy, P., Bouchriha, H., et al., Adv. Mater., 1994, vol. 6, p. 752.

    Article  Google Scholar 

  29. Shirota, Y.J., Mater. Chem, 2000, vol. 10, p. 1.

    Article  Google Scholar 

  30. Mitschke, U. and Bauerle, P., Mater. Chem, 2000, vol. 10, p. 1471.

    Article  Google Scholar 

  31. Jousselme, B., Blanchard, P., Levillain, E., et al., Am. Chem. Soc., 2003, vol. 125, p. 1363.

    Article  Google Scholar 

  32. Otsubo, T., Aso, Y., and Takimiya, K., Mater. Chem, 2002, vol. 12, p. 2565.

    Article  Google Scholar 

  33. Lopez-Cabarcos, E., Retama, J., Sholin, V., et al., Polym. Int., 2007, vol. 56, p. 588.

    Article  Google Scholar 

  34. Yassar, A., Gamier, F., Deloffre, F., et al., Adv. Mater., 1994, vol. 6, p. 660.

    Article  Google Scholar 

  35. Roncali, J., Chem. Rev., 1992, vol. 92, p. 711.

    Article  Google Scholar 

  36. Demeter, D., Blanchard, P., Allain, M., et al., Org. Chem, 2007, vol. 72, p. 5285.

    Article  Google Scholar 

  37. Burrell, K., Chen, J., Collis, G., et al., Synth. Met., 2003, vol. 135–136, p. 97.

    Article  Google Scholar 

  38. Si, P., Chi, Q., Li, Z., et al., Am. Chem. Soc., 2007, vol. 129, p. 3888.

    Article  Google Scholar 

  39. Dinelli, F., Murgia, M., Levy, P., et al., Phys. Rev. Lett., 2004, vol. 92, p. 116802.

    Article  Google Scholar 

  40. Murphy, A.R. and Chang, P.C., Vandyke p. et al., Chem. Mater., 2005, vol. 17, p. 6033.

    Article  Google Scholar 

  41. Marsella, M.J. and Swager, T.M.J., Am. Chem. Soc., 1993, vol. 115, p. 12214.

    Article  Google Scholar 

  42. Reitzel, N., Greve, D., Kjaer, K., et al., J. Am. Chem. Soc., 2000, vol. 122, p. 5788.

    Article  Google Scholar 

  43. Nakahara, H., Fukuda, K., Mobius, D., et al., Phys. Chem., 1986, vol. 90, p. 6144.

    Article  Google Scholar 

  44. McRae, E. and Kasha, M., Chem. Phys., 1958, vol. 28, p. 721.

    Google Scholar 

  45. Dimitrakopoulos, C.D. and Mascaro, D.J., IBM J. Res. Dev, 2001, vol. 45, p. 11.

    Article  Google Scholar 

  46. Chen, J., Murphy, A., Esteve, J., et al., Langmuir, 2004, vol. 20, p. 7703.

    Article  Google Scholar 

  47. Ponomarenko, S.A., Borshchev, O.V., Setayesh, S., et al., Organometallics, 2010, vol. 29, p. 4213.

    Article  Google Scholar 

  48. Anokhin, D.V., Defaux, M., Mourran, A., et al., J. Phys. Chem. C, 2012, vol. 116, p. 22727.

    Article  Google Scholar 

  49. Arslanov, V.V., Usp. Khim., 2000, vol. 69, p. 963.

    Article  Google Scholar 

  50. Agina, E.V., Usov, I.A., Borshchev, O.V., et al., Langmuir, 2012, vol. 28, p. 16186.

    Article  Google Scholar 

  51. Sizov, A.S., Agina, E.V., Gholamrezaie, V.V., et al., Appl. Phys. Lett., 2013, vol. 103, p. 4.

    Article  Google Scholar 

  52. Lukovskaya, E., Bobylyova, A., Fedorova, O., et al., Synth. Met., 2007, vol. 157, p. 885.

    Article  Google Scholar 

  53. Lukovskaya, E.V., Bobyleva, A.A., Fedorova, O.A., et al., Russ, Chem. Bull., 2007, vol. 56, p. 932.

    Article  Google Scholar 

  54. Lukovskaya, E.V., Bobyleva, A.A., Fedorova, O.A., et al., Russ, Chem. Bull, 2009, vol. 58, p. 1465.

    Article  Google Scholar 

  55. Lukovskaya, E., Bobylyova, A., Fedorov, Y., et al., Chem. Phys. Chem, 2010, vol. 11, p. 3152.

    Google Scholar 

  56. Stuchebryukov, S.D., Selektor, S.L., Silant’eva, D.A., et al., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, p. 189.

    Article  Google Scholar 

  57. Videlot-Ackermann, C., Ackermann, J., Kawamura K. et al., Org. Electron, 2006, vol. 7, p. 465.

    Article  Google Scholar 

  58. Lednev, I.K. and Petty, M.C., Langmuir, 1994, vol. 10, p. 4185.

    Article  Google Scholar 

  59. Lednev, I.K. and Petty, M.C., J. Phys. Chem., 1994, vol. 98, p. 9601.

    Article  Google Scholar 

  60. Wang, Y., Ozaki, Y., and Iriyama, K., Langmuir, 1995, vol. 11, p. 705.

    Article  Google Scholar 

  61. Zhou, M., Liu, H.L., Yang, H.F., et al., Langmuir, 2006, vol. 22, p. 10877.

    Article  Google Scholar 

  62. Mobius, D., Acc. Chem. Res., 1981, vol. 14, p. 63.

    Article  Google Scholar 

  63. Kuhn, H., Mann, B., Bucher, H., et al., Photogr. Sci. Eng., 1967, vol. 11, p. 233.

    Google Scholar 

  64. Kuhn, H., Pure Appl. Chem., 1979, vol. 51, p. 341.

    Article  Google Scholar 

  65. Bjornholm, T., Greve, D.R., Reitzel, N., et al., J. Am. Chem. Soc., 1998, vol. 120, p. 7643.

    Article  Google Scholar 

  66. Arslanov, V.V., Gorbunova, Yu.G., Selektor, S.L., et al., Russ, Chem. Bull, 2004, p. 2426.

    Google Scholar 

  67. Grauby-Heywang, C., Selektor, S.L., Abraham, E., et al., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, p. 31.

    Article  Google Scholar 

  68. Abraham, E., Selektor, S., Grauby-Heywang, C., and Jonusauskas, G., J. Photochem. Photobiol., vol. 93, p. 44.

  69. Lednev, I.K. and Petty, M.C., Adv. Mater. Opt. Electron, 1994, vol. 4, p. 225.

    Article  Google Scholar 

  70. Xia, C., Locklin, J., Youk, J.H., et al., Langmuir, 2002, vol. 18, p. 955.

    Article  Google Scholar 

  71. Turshatov, A.A., Bossi, M.L., Möbius, D., et al., Langmuir, 2006, vol. 22, p. 1571.

    Article  Google Scholar 

  72. Sergeeva, T.I., et al., Colloids and Surfaces A, 2005, vol. 264, p. 207.

    Article  Google Scholar 

  73. Alfimov, M.V., Herald Russ. Acad. Sci., 2003, vol. 73, p. 429.

    Google Scholar 

  74. Frederick, M. and Fowkes, J., Phys. Chem., 1963, vol. 67, p. 1982.

    Article  Google Scholar 

  75. Khanova, L.A., Evstefeeva, Y.E., and Krishtalik, L.I., Russ. J. Electrochem, 2003, vol. 39, p. 66.

    Article  Google Scholar 

  76. Selektor S., Fedorova, O. Lukovskaya, E., et al., J. Phys. Chem. B, vol. 116, p. 1482.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Selektor.

Additional information

Original Russian Text © S.L. Selektor, O.A. Fedorova, E.V. Lukovskaya, N.A. Tarasova, O.A. Raitman, A.V. Anisimov, Yu.V. Fedorov, V.V. Arslanov, 2014, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2014, Vol. 50, No. 5, pp. 451–464.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selektor, S.L., Fedorova, O.A., Lukovskaya, E.V. et al. Planar supramolecular systems based on geometrical isomers of crown-containing oligothiophenes. Prot Met Phys Chem Surf 50, 557–569 (2014). https://doi.org/10.1134/S2070205114050153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205114050153

Keywords

Navigation