Skip to main content
Log in

Photorefractive and nonlinear optical properties of indium(III) tetra(15-crown-5)phthalocyaninate-based composites

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Photoelectric, nonlinear optical, and photorefractive properties of hybrid composite materials based on polyvinylcarbazole (PVK) and indium(III) 2,3,9,10,16,17,23,24-tetra(15-crown-5)phthalocyaninate [(15C5)4Pc]In(OH) are studied in detail. Field dependence of the quantum efficiency in a 7.8 μm-thick layer containing 5 at % [(15C5)4Pc]In(OH) is measured. The best approximation of the quantum efficiency with Onsager’s equation corresponds to a quantum yield of thermalized electron-hole pairs φ0 = 0.01 at initial separation r 0 = 9.8 Å. Z-scan measurements in a nanosecond range showed that the electric susceptibility of [(15C5)4Pc]In(OH) solution in tetrachloroethane (TCE) with a concentration of 7 × 10−4 mol/L is χ(3) = 1.34 × 10−9 esu. The maximum coupling gain coefficient found for the material composed of PVK and 5 wt % [(15C5)4Pc]In(OH) at an electric-field intensity of 200 V/μm is Γ = 80 cm−1, and the difference between the coupling gain and absorption coefficients is Γ − α = 70 cm−1. The dependence of the coupling gain coefficient on the intensity ratio of interfering beams 1 and 2 (β = I 1(0)/I 2(0)) in a composite containing 3 wt % [(15C5)4Pc]In(OH) is measured. An increase in β was attained by decreasing intensity of the signal beam I 2(0) at constant intensity of the pump beam I 1(0) = 0.15 W/cm2 and E 0 = 214 V/μm. Within the initial segment of the curve, the coupling gain coefficient increases from 30 to 60 cm−1; then, the coefficient drops almost to the initial value. The data obtained show that the composite materials studied can be used in practice for correcting faded images. The combined analysis of the results obtained and similar data for gallium and ruthenium tetra-15-crown-5-phthalocyaninate complexes revealed the regularities in the change of the quantum yield of thermalized electron-hole pairs and the photorefractive coupling gain coefficient in a series of complexing metals: gallium(III), ruthenium(II), and indium(III). An increase in the molecular weight of the central metal atom is found to result in a substantial decrease in Γ and φ0 due to the increase in the spin-orbit coupling constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grishina, A.D., Shapiro, B.I., Pereshivko, L.Ya., et al., Polymer Sci., A, 2005, vol. 47, no. 2, p. 285.

    Google Scholar 

  2. Vannikov, A.V., Grishina, A.D., Pereshivko, L.Ya., et al., J. Nonlinear Opt. Phys. Mater., 2005, vol. 14, no. 3, p. 439.

    Article  Google Scholar 

  3. Vannikov, A.V. and Grishina, A.D., High Energy Chem., 2007, vol. 41, no. 3, p. 162.

    Article  Google Scholar 

  4. Grishina, A.D., Zolotarevskii, V.I., Gorbunova, et al., Russ. J. Phys. Chem. A, 2009, vol. 83, no. 11, p. 1907.

    Article  Google Scholar 

  5. Vannikov, A.V., Grishina, A.D., Gorbunova, et al., Polym. Sci., Ser. A, 2011, vol. 53, no. 11, p. 1069.

    Article  Google Scholar 

  6. Grishina, A.D., Gorbunova, Yu.G., Zolotarevsky, V.I., et al., J. Porphyrins Phthalocyanines, 2009, vol. 13, no. 1, p. 92.

    Article  Google Scholar 

  7. Knoester, J., Chem. Phys. Lett., 1993, vol. 203, no. 4, p. 371.

    Article  Google Scholar 

  8. Markov, R.V., Plekhanov, A.I., Rautian, S.G., et al., Opt. Spectrosc., 1998, vol. 85, no. 4, p. 588.

    Google Scholar 

  9. Vannikov, A.V., Gorbunova, Yu.G., Grishina, A.D., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 1, p. 57.

    Article  Google Scholar 

  10. Vannikov, A.V., Grishina, A.D., Gorbunova, Yu.G., et al., Russ. J. Phys. Chem. A, 2006, vol. 80, no. 3, p. 453.

    Article  Google Scholar 

  11. Grishina, A.D., Konnov, F.Yu., Gorbunova, Yu.G., et al., Russ. J. Phys. Chem. A, 2007, vol. 81, no. 6, p. 982.

    Article  Google Scholar 

  12. Grishina, A.D., Gorbunova, Yu.G., Enakieva, Yu.Yu., et al., High Energy Chem., 2008, vol. 42, no. 4, p. 297.

    Article  Google Scholar 

  13. Grishina, A.D., Gorbunova, Yu.G., Pereshivko, L.Ya., et al., Prot. Met. Phys. Chem. Surf., 2009, vol. 45, no. 5, p. 535.

    Article  Google Scholar 

  14. Pereshivko, L.Ya., Grishina, A.D., Gorbunova, Yu.G., et al., High Energy Chem., 2009, vol. 43, no. 7, p. 543.

    Article  Google Scholar 

  15. Lapkina, L., Gorbunova, Y.G., Gil, D.O., et al., J. Porphyrins Phthalocyanines, 2013, vol. 17, nos. 6–7, p. 564.

    Article  Google Scholar 

  16. Vannikov, A.V., Grishina, A.D., Gorbunova, Yu.G., et al., High Energy Chem., 2014, vol. 48, no. 2, p. 97.

    Article  Google Scholar 

  17. Martynov, A.G., Gorbunova, Yu.G., Khrapova, I.G., et al., Russ. J. Inorg. Chem., 2002, vol. 47, no. 10, p. 1479.

    Google Scholar 

  18. Gorbunova, Yu.G., Lapkina, L.A., Martynov, A.G., et al., Russ. J. Coord. Chem., 2004, vol. 30, no. 4, p. 245.

    Article  Google Scholar 

  19. Nefedova, I.V., Gorbunova, Yu.G., Sakharov, S.G., and Tsivadze, A.Yu., Russ. J. Inorg. Chem., 2005, vol. 50, no. 2, p. 165.

    Google Scholar 

  20. Braun, Ch.L., J. Chem. Phys., 1984, vol. 80, no. 9, p. 4157.

    Article  Google Scholar 

  21. Sheik-Bahae, M., Said, A.A., Wei, T.-H., et al., IEEE J. Quantum Electron., 1990, vol. 26, no. 4, p. 760.

    Article  Google Scholar 

  22. Sutherland, R.L., Handbook of Nonlinear Optics, New York: Marcel Dekker, 1996.

    Google Scholar 

  23. Laryushkin, A.S., Krivenko, T.V., Gorbunova, Yu.G., et al., High Energy Chem., 2012, vol. 46, no. 5, p. 331.

    Article  Google Scholar 

  24. Enakieva, Yu.Yu., Gorbunova, Yu.G., Sakharov, S.G., and Tsivadze, A.Yu., Russ. J. Inorg. Chem., 2002, vol. 47, no. 12, p. 1815.

    Google Scholar 

  25. Gorbunova, Yu.G., Enakieva, Yu.Yu., Sakharov, S.G., and Tsivadze, A.Yu., J. Porphyrins Phthalocyanines, 2003, vol. 7, no. 12, p. 795.

    Article  Google Scholar 

  26. Gorbunova, Yu.G., Enakieva, Yu.Yu, Sakharov, S.G., and Tsivadze, A.Yu., Izv. Akad. Nauk, Ser. Khim., 2004, no. 1, p. 74.

    Google Scholar 

  27. Enakieva, Yu.Yu., Gorbunova, Yu.G., Nefedov, S.E., and Tsivadze, A.Yu., Mendeleev Commun., 2004, vol. 14, no. 5, p. 193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vannikov.

Additional information

Original Russian Text © A.D. Grishina, Yu.G. Gorbunova, T.V. Krivenko, L.A. Lapkina, V.V. Savel’ev, A.V. Vannikov, A.Yu. Tsivadze, 2014, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2014, Vol. 50, No. 4, pp. 381–389.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishina, A.D., Gorbunova, Y.G., Krivenko, T.V. et al. Photorefractive and nonlinear optical properties of indium(III) tetra(15-crown-5)phthalocyaninate-based composites. Prot Met Phys Chem Surf 50, 472–479 (2014). https://doi.org/10.1134/S2070205114040054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205114040054

Keywords

Navigation