Skip to main content
Log in

Form factor of the electron density of an anion specifically adsorbed on metal surface in an electrolyte

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The character of distribution of electron density over the proximity of a halide anion specifically adsorbed at the s,p-metal-electrolyte solution interface boundary was considered. An assumption was made that the physical nature of the specific bonding of the anion is caused by mixing of electron waves of free electrons in the metal and the valent state of the anion as the electrons resonantly overcome the potential barrier between the anion and the metal. The physical (dissipative quantum) mechanism of microscopic processes is described using the Anderson impurity model, the Friedel sum rule, and the Parr conception of equalization of electronegativity values that determine the partial transfer of electron charge from the anion to the metal and the emergence of localized dipole at the interphase boundary. The equations renormalizing the microscopic parameters of the adsorption event to macroscopic state functions of the adsorption phase on an electrode were obtained. The chemical potential of the halide anion specifically adsorbed from electrolyte solution on an uncharged electrode is estimated. The mechanism under consideration explains the details of the dependences of polarization parameters of the electrode on anion and metal nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frumkin, A.N., Potentsialy nulevogo zaryada (Potentials of Zero Charge), Moscow: Nauka, 1982.

    Google Scholar 

  2. Marnin, Th., Bruinsma, R., and Platsman, P.M., Phys. Rep., 1993, vol. 223, p. 135.

    Article  Google Scholar 

  3. Lang, N.D., Phys. Rev. Lett., 1981, vol. 46, p. 842.

    Article  Google Scholar 

  4. Gabovich, A.M., Reznikov, Yu.A., and Voitenko, A.I., Phys. Rev. E, 2006, vol. 73. p. 021606.

    Article  Google Scholar 

  5. Kuklin, R.N., Elektrokhimiya, 1977, vol. 13, p. 1182.

    Google Scholar 

  6. Vorotyntsev, M.A. and Kornyshev, A.A., Elektrostatika sred s prostranstvennoi dispersiei (Electrostatics of Media with the Spatial Dispersion), Moscow: Nauka, 1993.

    Google Scholar 

  7. Gurney, R., Phys. Rev., 1935, vol. 45, p. 479.

    Article  Google Scholar 

  8. Grimley, T.B., Proc. Phys. Soc., 1967, vol. 90, p. 751.

    Article  Google Scholar 

  9. Bennett, A.J. and Falicov, L.M., Phys. Rev., 1966, vol. 151, p. 512.

    Article  Google Scholar 

  10. Lorenz, W. and Salie, G., Z. Phys. Chem., 1961, vol. 218, p. 259.

    Google Scholar 

  11. Schultze, J.W. and Vetter, K.J., J. Electroanal. Chem., 1973, vol. 44, p. 63.

    Article  Google Scholar 

  12. Koppitz, F.D., Schultze, J.W., and Rolle, D., J. Electroanal. Chem., 1984, vol. 170, p. 5.

    Article  Google Scholar 

  13. Parr, R.G. and Yang, W., Density Functional Theory of Atoms and Molecules, New York: Oxford Univ. Press, 1989.

    Google Scholar 

  14. Newns, D.M., Phys. Rev., 1969, vol. 178, p. 1123.

    Article  Google Scholar 

  15. Kuklin, R.N., Elektrokhimiya, 1979, vol. 15, p. 1763.

    Google Scholar 

  16. Landau L.D., Lifshits E.M., Kvantovaya mekhanika. Nerelyativistskaya teoriya (Quantum Mechanics. Nonrelativistic Theory), Moscow: Nauka, 1989.

    Google Scholar 

  17. Volokitin, A.I., Fiz. Tverd. Tela, 1978, vol. 20, p. 1206.

    Google Scholar 

  18. Medvedev, I.G., Khim. Fiz., 1985, vol. 4, p. 103.

    Google Scholar 

  19. Davydov, S.Yu. and Troshin, S.V., Phys. Solid State, 2007, vol. 49, p. 1583.

    Article  Google Scholar 

  20. Migdal, A.B., Kachestvennye metody v kvantovoi teorii (Qualitative Methods in Quantum Theory), Moscow: Nauka, 1975.

    Google Scholar 

  21. Fukui, K., Yonezawa, T., and Shingu, H., J. Chem. Phys., 1952, vol. 20, p. 722.

    Article  Google Scholar 

  22. Ziman, J., Principles of the Theory of Solids, Cambridge, Mass.: Cambridge Univ. Press, 1972.

    Book  Google Scholar 

  23. Langer, J.S. and Ambegaokar, V., Phys. Rev., 1961, vol. 121, p. 1090.

    Article  Google Scholar 

  24. Friedel, J., Philos. Mag., 1952, vol. 43, p. 153.

    Google Scholar 

  25. Langer, J.S., Phys. Rev., 1966, vol. 150, p. 516.

    Article  Google Scholar 

  26. Muscat, J.P. and Newns, D.M., J. Phys. C: Solid State Phys., 1974, vol. 7, p. 2630.

    Article  Google Scholar 

  27. Ashcroft, N. and Mermin, N., Solid State Physics, New York: Holt, Rinehart, and Winston, 1976.

    Google Scholar 

  28. Kratkii spravochnik fiziko-khimicheskikh velichin (Brief Handbook on Physicochemical Values), Mishchenko, K.P. and Ravdel’, A.A, Eds., Moscow: Goskhimizdat, 1974.

    Google Scholar 

  29. Grahame, D.C., J. Am. Chem. Soc., 1954, vol. 76, p. 4819.

    Article  Google Scholar 

  30. Kuklin, R.N. and Emets, V.V., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 4, p. 406.

    Article  Google Scholar 

  31. Kuklin, R.N., Elektrokhimiya, 1979, vol. 15, p. 1763.

    Google Scholar 

  32. Kuklin, R.N., Elektrokhimiya, 1982, vol. 18, p. 1526.

    Google Scholar 

  33. Kuklin, R.N. and Emets, V.V., Russ. J. Phys. Chem. B, 2009, vol. 3, p. 818.

    Article  Google Scholar 

  34. Kuklin, R.N., Inform.-Analit. Zh., 2008, no. 6, p. 131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Kuklin.

Additional information

Original Russian Text © R.N. Kuklin, V.V. Emets, 2014, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2014, Vol. 50, No. 1, pp. 8–18.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuklin, R.N., Emets, V.V. Form factor of the electron density of an anion specifically adsorbed on metal surface in an electrolyte. Prot Met Phys Chem Surf 50, 5–14 (2014). https://doi.org/10.1134/S2070205114010079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205114010079

Keywords

Navigation