Skip to main content
Log in

Thermodynamics of chemical and electrochemical stability of copper-nickel alloys

  • Physicochemical Problems of Materials Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

With the use of the substitution solution model, thermodynamic properties of Cu-Ni solid solutions are described in the stratification region. Cross sections of the Cu-Ni-O phase diagram and potentialpH diagrams of the German silver-H2O systems, such as CuNi19-H2O and MNZhMts30-1-1-H2O, at 25°C and 1 bar are plotted. The homogeneity region of NiO x phase at equilibrium with atmospheric oxygen is estimated at various temperatures. Thermodynamic features of the corrosion-electrochemical behavior of copper-nickel alloys are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smiryagin, A.P., Promyshlennye tsvetnye metally i splavy (Industrial Nonferrous Metals and Alloys), Moscow: Metallurgizdat, 1974.

    Google Scholar 

  2. Novikov, I.I., Medi splavy. Kratkaya khimicheskaya entsiklopediya (Copper Alloys. The Brief Chemical Encyclopedia), Knunyants, I.L., Ed., Moscow: Sovetskaya entsiklopediya, 1964, vol. 3.

    Google Scholar 

  3. Copper-Nickel Alloy Grades, in Marochnik stali i splavov (Steel and Alloy Classifier), http://www.splav.kharkov.com/choose-mat.php?class-id=61.

  4. German Silvers, in Spravochnik Khimika (Chemist’s Handbook), http://chem100.ru/text.php?t=131b.

  5. Cupronickel, http://en.wikipedia.org/wiki/Cupronickel.

  6. Chervyakov, V.I., Markos’yan, G.N., and Pchel’nikov, A.P., Zashch. Met., 2004, vol. 40, no. 2, p. 123.

    Google Scholar 

  7. Kuznetsov, Yu.I. and Rylkina, M.V., Zashch. Met., 2004, vol. 40, no. 5, p. 505.

    Google Scholar 

  8. Markos’yan, G.N., Sirota, D.S., and Pchel’nikov, A.P., Zashch. Met., 2005, vol. 41, no. 4, p. 390.

    Google Scholar 

  9. Sirota, D.S. and Pchel’nikov, A.P., Zashch. Met., 2005, vol. 41, no. 6, p. 652.

    Google Scholar 

  10. Sirota, D.S. and Pchel’nikov, A.P., Zashch. Met., 2005, vol. 41, no. 6, p. 598.

    Google Scholar 

  11. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem. Spravochnik (Phase Diagrams of Binary Metallic Systems), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1997, vol. 2, p. 283.

    Google Scholar 

  12. Phase Diagram. FactSage Database, http://www.crct.polymtl.ca/fact/documentation.

  13. Sabine an Mey, CALPHAD, 1992, vol. 16, no. 3, p. 255.

    Article  Google Scholar 

  14. Straumal, B.B., Protasova, S.G., Mazilkin, et al., J. Mater. Sci., 2012, vol. 47, no. 1, p. 360.

    Article  CAS  Google Scholar 

  15. Servant, C., Sundman, B., and Lyon, O., CALPHAD, 2001, vol. 25, no. 1, p. 79.

    Article  CAS  Google Scholar 

  16. Sundman, B. and Agren, J., J. Phys. Chem. Solids, 1981, vol. 42, p. 297.

    Article  CAS  Google Scholar 

  17. Laptev, D.M., Termodinamika metallurgicheskikh rastvorov (Thermodynamics of Metallurgical Solutions), Chelyabinsk: Metallurgiya, 1992.

    Google Scholar 

  18. Mikhailov, G.G., Leonovich, B.I., and Kuznetsov, Yu.S., Termodinamika metallurgicheskikh protsessov i sistem (Thermodynamics of Metallurgical Processes and Systems), Moscow: Izd. Dom MISiS, 2009.

    Google Scholar 

  19. Tyurin, A.G., Termodinamika khimicheskoi i elektrokhimicheskoi ustoichivosti tverdykh splavov zheleza, khroma i nikelya (Thermodynamics of the Chemical and Electrochemical Resistance of Solid Iron, Chromium, and Nickel Alloys), Chelyabinsk: Izd. ChelGU, 2011.

    Google Scholar 

  20. PhDi, http://td.chem.msu.ru/?page-id=4.

  21. Tyurin, A.G and Shreiner, A.A., Zashch. Met., 2007, vol. 43, no. 3, p. 313.

    Google Scholar 

  22. Tyurin, A.G., Zashch. Met., 2004, vol. 40, no. 3, p. 256.

    Google Scholar 

  23. Moiseev, G.K., Vatolin, N.A., Marshuk, L.A., and Il’inykh, N.P, Temperaturnye zavisimosti privedennoi energii Gibbsa nekotorykh neorganicheskikh veshchestv: al’ternativnyi bank dannykh ASTRA. OWN (Temperature Dependences of the Reduced Gibbs Energies of Some Inorganic Substances: Alternative ASTRA Database. OWN), Yekaterinburg: UrORAN, 1997.

    Google Scholar 

  24. Sharlai, E.V., Cand. Sci. (Chem.) Dissertation, Chelyabinsk: Izd. YuUrGU, 2008.

  25. Goll, G., Springer Tracts Mod. Phys., 2006, vol. 214, p. 121.

    Article  Google Scholar 

  26. Zakharov, A.Yu., Mitrofanov, V.Ya., and Nikiforov, A.E., Sbornik trudov V Vserossiiskoi nauchnoi konferentsii (Proceedings of the Vth All-Russian Scientific Conf.), Yekaterinburg, 2000, p. 181.

  27. Panov, Yu.D., Zenkov, E.V., and Moskvin, A.S., Sbornik trudov V Vserossiiskoi nauchnoi konferentsii (Proceedings of the Vth All-Russian Scientific Conf.), Yekaterinburg, 2000, p. 366.

  28. Xu, G., J. Superconductivity, 2001, vol. 14, no. 4, p. 509.

    Article  CAS  Google Scholar 

  29. Teplov, M.A., Bakharev, O.N., Dooglav, A.V., et al., J. Superconductivity, 1999, vol. 12, no. 1, p. 113.

    Article  CAS  Google Scholar 

  30. El-Tantawy, Y.A., El-Kholy, A.E., and Kasem, T.S.E., Corros. Sci., 1978, vol. 18, no. 12, p. 1065.

    Article  CAS  Google Scholar 

  31. Muroi, M. and Street, R., Phys. C: Superconductivity, 1995, vol. 248, nos. 3–4, p. 290.

    Article  CAS  Google Scholar 

  32. Tokura, Y., Phys. C: Superconductivity, 1991, vols. 185–189, no. 1, p. 174.

    Article  Google Scholar 

  33. Tret’yakov, Yu.D., Khimiya nestekhiometricheskikh okislov (The Chemistry of Nonstoichiometric Oxides), Moscow: Izd. Mosk. Gos. Univ., 1974.

    Google Scholar 

  34. Morachevskii, A.G., Tsemekhman, L.Sh., and Tsymbulov, L.B., Termodinamika sistem i protsessov v metallurgii nikelya i medi (Thermodynamics of Systems and Processes in the Metallurgy of Nickel and Copper), St. Petersburg: Izd. Politekhn. Univ., 2008, issue 12.

    Google Scholar 

  35. Bogatskii, D.P. and Mineeva, I.A, Zh. Obshch. Khim., 1959, vol. 29, no. 4, p. 1382.

    CAS  Google Scholar 

  36. Shirokov, Yu.G. and Kirillov, I.P., Izv. Vyssh. Uchebn. Zaved., Khimiya Khim. Tekhnol., 1961, no. 4, p. 599.

  37. Gmelins Handbuch der anorganischen Chemie. 8 Auflage. Nickel. Teil B. (Gmelin’s handbook of inorganic chemistry. 8th edition. Nickel. Part B.), Vienheim: Verlag Chemie, 1966.

  38. Termicheskie konstanty veshcjestv: baza dannykh (Thermal Constants of Substances: Database), http://www.chem.msu.su/cgi-bin/tkv.pl?show=welcome.html.

  39. Tret’yakov, Yu.D., Termodinamika ferritov (Thermodynamics of Ferrites), Leningrad: Khimiya, 1967.

    Google Scholar 

  40. Cotton, F., Advanced Inorganic Chemistry, New York: Wiley, 1972.

    Google Scholar 

  41. Nikolaichuk, P.A., Shalyapina, T.I., Tyurin, A.G., and Mosunova, T.V., Vestn. YuUrGU, Ser. Khimiya, 2010, no. 31 (207), issue 4, p. 72.

  42. Navrotsky, A. and Kleppa, O.J., J. Inorg. Nucl. Chem., 1968, vol. 30, p. 479.

    Article  CAS  Google Scholar 

  43. Jacob, K.T., Fitzner, K., and Alcock, C.B., Metallurg. Trans. B, 1977, vol. 8, no. 3, p. 451.

    Article  Google Scholar 

  44. Kulkarni, A.D., Metallurg. Trans., 1973, vol. 4, no. 7, p. 1713.

    Article  CAS  Google Scholar 

  45. Samadashvili, I.Dzh., Vararashvili, V.S., Machaladze, T.E., and Pavlenishvili, T.A., Inorg. Mater., 2002, vol. 38, no. 11, p. 1186.

    Article  CAS  Google Scholar 

  46. Gollai, A.V., Lykasov, A.A., Pavlovskaya, M.S., and Buldygin, S.V., Russ. J. Phys. Chem., 2006, vol. 80, no. 11, p. 1770.

    Article  CAS  Google Scholar 

  47. Khvan, V.A. et al., J. Phase Equil. Diffus., 2011, vol. 32, no. 6, p. 498.

    Article  CAS  Google Scholar 

  48. Tyurin, A.G., Zashch. Met., 2000, vol. 36, no. 1, p. 67.

    Google Scholar 

  49. Iwao, K., Watanabe, Y., and Kozuka, Z., Mater. Trans., 1979, vol. 20, no. 10, p. 593.

    Google Scholar 

  50. Schneider, F. and Schmalzried, H., Zeits. Physik. Chem. Neue Folge, 1990, vol. 166, p. 1.

    Article  CAS  Google Scholar 

  51. Kjellqvist, L. and Selleby, M., J. Phase Equil. Diffus., 2010, vol. 31, no. 2, p. 113.

    Article  CAS  Google Scholar 

  52. Bo, Y. et al., Chin. J. Nonferrous Metals, 2007, vol. 17, no. 10, p. 1705.

    Google Scholar 

  53. Ruzinov, L.P. and Gulyanitskii, B.S., Ravnovesnye prevrashcheniya metallurgicheskikh reaktsii: spravochnik (Equilibrium Transformations in Metallurgical Reactions: Handbook), Moscow: Metallurgiya, 1975.

    Google Scholar 

  54. JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data, 1985, vol. 14, p. 1.

  55. Veryagin, U.D. et al., Termodinamicheskie svoistva neorganicheskikh veshchestv: spravochnik (Thermodynamic Properties of Inorganic Substances: Handbook), Zefirov, A.P., Ed., Moscow: Atomizdat, 1965.

    Google Scholar 

  56. Pankratz, L.B. and Stuve, J.M., and Gokcen, M.A., Thermodynamic Data for Mineral Technology: Handbook, Bureau of Mines, USA, 1984.

  57. Charette, G.G. and Flengas, S.N., J. Electrochem. Soc. Electrochem. Sci., 1968, vol. 115, no. 8, p. 796.

    Article  CAS  Google Scholar 

  58. Hugh, St.C.O. and Pownceby, M.I., Contrib. Mineral. Petrol., 1993, vol. 114, no. 3, p. 296.

    Article  Google Scholar 

  59. Wicks, C.E. and Block, F.E., Thermodynamic Properties of 65 Elements: Their Oxides, Halides, Carbides, and Nitrides, Bureau of Mines, USA, 1963.

  60. Elliott, G.F. and Gleiser, M., Thermochemistry for Steelmaking, London: Pergamon, 1960, vol. 1.

    Google Scholar 

  61. Robie, A. and Hemingway, B.S., US Geological Survey Bulletin 2131, Washington: US Government Printing Office, 1995.

    Google Scholar 

  62. Ball, J.W. and Nordstrom, D.K., US Geological Survey. Open-File Rep. No. 91.

  63. Tyurin, A.G., Zashch. Met., 2005, vol. 41, no. 1, p. 74.

    Google Scholar 

  64. Katkov, A.E. and Lykasov, A.A., Inorg. Mater., 2003, vol. 39, no. 2, p. 171.

    Article  CAS  Google Scholar 

  65. Park, B.H., Kim, D.-S., Bull. Korean Chem. Soc., 1999, vol. 20, no. 8, p. 939.

    CAS  Google Scholar 

  66. Zhuk, N.P., Kurs teorii korrozii i zashchity metallov: uch. posobie dlya vuzov (Textbook on the Theory of Corrosion and Metal Protection. University Course), Moscow: Al’yans, 2006.

    Google Scholar 

  67. Nikolaychuk P.A., Abstracts of the XVIII Int. Conf. on Chemical Thermodynamics in Russia, Samara, 2011, vol. 2, p. 16.

    Google Scholar 

  68. Kireev, V.A., Metody prakticheskikh raschetov v termodinamike khimicheskikh reaktsii (Methods of Practical Calculations in the Thermodynamics of Chemical Reactions), Moscow: Khimiya, 1970.

    Google Scholar 

  69. Nikolaychuk, P.A. and Tyurin, A.G., Abstracts of the XVIII Int. Conf. on Chemical Thermodynamics in Russia, Samara, 2011, vol. 2, p. 17.

    Google Scholar 

  70. Spravochnik khimika (Chemist’s Handbook), Nikol’skii, B.P., Ed., Moscow: Khimiya, 1964, vol. 3.

    Google Scholar 

  71. Kish, L., Kinetics of Electrochemical Metal Dissolution, Budapest: Akademiai Kiado, 1988.

    Google Scholar 

  72. Pourbaix Diagrams, in Substances and Technologies, www.substech.com/dokuwiki/doku.php?id=pourbaixdiagrams.

  73. Nikolaichuk, P.A., Tyurin, A.G., and Kanat’eva, I.I., Mezhvuzovskii sbornik nauchnykh trudov VII Vserossiiskoi konferentsii molodykh uchenykh s mezhdunarodnym uchastiem (Collected Works of the VII All-Russian Conf. Of Young Scientists), Saratov: KUBiK, 2010.

    Google Scholar 

  74. FactSage EpH-Web, http://www.sgte.org/ephweb.php.

  75. THERMEXPERT Potential-pH Diagram Generator, Argentum Solutions, http://www.argentumsolutions.com/cgi-bin/thermexpert.

  76. SUPCRT, Prediction Central, http://www.predcent.org/download/supcrt.

  77. Johnson, J.W., Oelkers, E.H., and Helgeson, H.C., Computers Geosci., 1992, vol. 16, no. 7, p. 899.

    Article  Google Scholar 

  78. The Geochemist’s Workbench (GWB). Rockware, Earth Science and GIS Software, http://www.rockware.com/product/overview.php?id=132.

  79. JNC-TDB, Japan Nuclear Cycle organization, http://migrationdb.jnc.go.jp.

  80. ZZ-HATCHES 19: Database for Radiochemical Modeling, Nuclear Energy Agency, http://www.oecdnea.org/tools/abstract/detail/nea-1210.

  81. PHREEQC-2, http://wwwbrr.cr.usgs.gov/projects/GWC-coupled/phreeqc.

  82. Eriksson, G., Anal. Chim. Acta, 1979, vol. 112, no. 4, p. 375.

    Article  CAS  Google Scholar 

  83. SOLGASWATER, http://158.227.5.164/Chemical-Diagrams/html/ISP-Solgaswater.htm.

  84. Atlas of E-pH Diagrams: Intercomparison of Thermodynamic Databases, http://www.gsj.jp/GDB/openfile/files/no0419/openfile419e.pdf.

  85. Tyurin, A.G., Doctoral (Chem.) Dissertation, Chelyabinsk: ChelGU, 2008.

  86. Spravochnik po elektrokhimii (Handbook of Electrochemistry), Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981.

    Google Scholar 

  87. Silverman, D.C., Corrosion, 1981, vol. 37, no. 9, p. 546.

    Article  CAS  Google Scholar 

  88. Beverskog, B., Corrosion, 1999, vol. 55, no. 11, p. 1077.

    Article  CAS  Google Scholar 

  89. Glasby, G.P., Aquatic Geochem., 1999, vol. 5, no. 3, p. 227.

    Article  CAS  Google Scholar 

  90. Uhlig, H.U. and Revie, R.W., Corrosion and Corrosion Control (An Introduction to Corrosion Science and Engineering), New York: Wiley, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Nikolaychuk.

Additional information

Original Russian Text © P.A. Nikolaychuk, A.G. Tyurin, 2012, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2012, Vol. 48, No. 4, pp. 398–412.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaychuk, P.A., Tyurin, A.G. Thermodynamics of chemical and electrochemical stability of copper-nickel alloys. Prot Met Phys Chem Surf 48, 462–476 (2012). https://doi.org/10.1134/S2070205112040132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205112040132

Keywords

Navigation