Skip to main content
Log in

Electronic resonances on a metal surface associated with adsorption

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Physical aspects of the nature of chemical bonding of halogenide anions with the surface of a metal electrode during specific adsorption from electrolyte solution were considered on a qualitative level. It was shown that a description of a typical dissipative quantum system (adsorbate-substrate) can be approximated by the one-electron mechanism of bonding, allowing stationary fractional separation of the electron charge density between the atomic core of the anion and metal. Partial charge transfer from anion to metal is due to the tunneling permeability of potential barrier separating the quasi-stationary state of valent electron in the anion from free electron states in the metal. The local volume density of this charge is formed as a result of potential scattering of electron waves of metal on an anion atomic core and is concentrated near the inner surface in the vicinity of the scattering center. The residual charge of the adsorbed anion is supported by resonant scattering on the atomic core of electron waves of occupied electron states of the metal from the vicinity of the Fermi boundary. Conservation of the total charge is guaranteed by the Friedel sum rule. A physical model was used to interpret the patterns observed in the data of electrosorption valency measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yemets, V. V. and Damaskin, B. B., Russ. J. Electrochem., 2011, col. 47, p. 131.

  2. Schultze, J.W. and Vetter K.J., J. Electroanal. Chem., 1973, vol. 44, p. 63.

    Article  CAS  Google Scholar 

  3. Leggett, A.J. In: Quantum Tunneling in Condensed Media, Amsterdam: Elsevier Science Publ., 1992.

    Google Scholar 

  4. Kuklin, R. N., Russ. J. Electrochem., 1979, vol. 15, p. 1763.

    CAS  Google Scholar 

  5. Kuklin, R. N. and Yemetz, V. V., Khim. Fiz., 2009, vol. 28, p. 80.

    CAS  Google Scholar 

  6. Slater, D., Metody samosoglasovannogo polya dlya molekul i tverdykh tel (Methods of self-consistent field for molecules and solids), Moscow: Mir, 1978.

    Google Scholar 

  7. Kohn, W., Becke, A. D., and Parr, R.G., J. Chem. Phys., 1996, vol. 100, p. 12974.

    Article  CAS  Google Scholar 

  8. Landau, L. D. and Lifshitz, E. M., Kvantovaya mekhanika. Nerelyatevistskaya teoriya (Quantim mechanics. Non-relativistic theory.), Moscow: Nauka, 1989.

    Google Scholar 

  9. Kostin, M. D., J. Chem. Phys., 1972, vol. 57, p. 3589.

    Article  CAS  Google Scholar 

  10. Weiner, J.H. and Forman, R. E., Phys. Rev. B., 1974, vol. 10, p. 325.

    Article  CAS  Google Scholar 

  11. Van, P. and Pulop, T., Phys. Lett. A., 2004, vol. 323, p. 374.

    Article  CAS  Google Scholar 

  12. Ushveridze, A.G., Phys. Lett. A., 1994., vol. 185, p. 123.

    Article  Google Scholar 

  13. Newns, D. M., Phys. Rev., 1969, vol. 178, p. 1123.

    Article  CAS  Google Scholar 

  14. Baz’, A. I., Zeldovich, Ya. B., and perelomov, A. M., Rasseyanie, reaktsii i raspady v nerelyativistskoy kvantovoy mekhanike (Scattering, reactions, and dissociations in non-relativistic quantum mechanics), Moscow: Nauka, 1966.

    Google Scholar 

  15. Pridel, J., Philos. Mag., 1952, vol. 43, p. 153.

    Google Scholar 

  16. Kuklin, R. N. and Yemetz, V. V., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 2, p. 156.

    Article  CAS  Google Scholar 

  17. Kuklin, R. N. and Yemetz, V. V., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 1, p. 1.

    Article  CAS  Google Scholar 

  18. Eguiluz, A. G., Solid State Commun., 1980, vol. 33, p. 21.

    Article  CAS  Google Scholar 

  19. Constantin, L. A and Pitarke, J. M., J. Chem. Theory Comput., 2009, vol. 5, p. 895.

    Article  CAS  Google Scholar 

  20. Dyugaev, A. M., JETP Lett., 1992, vol. 55, p. 271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Kuklin.

Additional information

Original Russian Text © R.N. Kuklin, V.V. Yemets, 2012, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2012, Vol. 48, No. 4, pp. 341–345.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuklin, R.N., Yemets, V.V. Electronic resonances on a metal surface associated with adsorption. Prot Met Phys Chem Surf 48, 406–410 (2012). https://doi.org/10.1134/S2070205112040090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205112040090

Keywords

Navigation