Skip to main content
Log in

Lateral Interaction between Molecules Adsorbed on the Surfaces of Non-Metals

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Spectral manifestations of lateral interactions between molecules adsorbed on non-metallic adsorbents, mostly oxides are considered. Static interaction, repulsive or attractive can be distinguished from the dynamic or resonance dipole–dipole interaction (RDDI) by means of isotopic dilution. Analysis of spectral data on CO adsorbed at low temperatures on ZnO, some other oxides or halogenides as well as recent quantum chemical calculations shows that static effect is enhanced by the solid due to the effect of surface relaxation induced by adsorption. Computer modelling of static and dynamic interactions enable one to explain the structure of the bands of adsorbed CO, frequency shifts, and other details in the spectra. Attractive interactions between different molecules can lead to mutual enhancement of adsorption and to the phenomena of induced Brønsted acidity and basicity, or the superacidity of some oxides exposed to gaseous acids. The theory and new experimental data on the influence of RDDI on the band shape of adsorbed SF6 and CF4 are discussed. Spectral evidence for RDDI and vibrational energy transfer between NF3 and pre-adsorbed SF6 on ZnO is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Eischens RP, Francis A (1956) The effect of surface coverage on the spectra of chemisorbed CO. J Phys Chem 60:194–201

    Article  CAS  Google Scholar 

  2. Boccuzzi F, Borello E, Zecchina A et al (1978) Infrared study of ZnO surface properties: I. Hydrogen and deuterium chemisorption at room temperature. J Catal 51:150–159. doi:10.1016/0021-9517(78)90288-9

    Article  CAS  Google Scholar 

  3. Lavalley JC, Saussey J, Raïs T (1982) Infrared study of the interaction between CO and H2 on ZnO: mechanism and sites of formation of formyl species. J Mol Catal 17:289–298. doi:10.1016/0304-5102(82)85040-2

    Article  CAS  Google Scholar 

  4. Hoffmann F (1983) Infrared reflection-absorption spectroscopy of adsorbed molecules. Surf Sci Rep 3:107. doi:10.1016/0167-5729(83)90001-8

    Article  CAS  Google Scholar 

  5. Griffin GL, Yates J (1982) Coadsorption studies of CO and H2 on ZnO. J Chem Phys 77:3751–3758. doi:10.1063/1.444241

    Article  CAS  Google Scholar 

  6. Denisenko LA, Tsyganenko AA, Filimonov VN (1984) Infrared study of the interaction between adsorbed molecules in the CO/ZnO system. React Kinet Catal Lett 25:23–26

    Article  CAS  Google Scholar 

  7. Paukshtis EA, Soltanov RI, Yurchenko EN (1983) IR spectroscopic studies of low-temperature CO adsorption on CaNaY zeolite. React Kinet Catal Lett 22:147–151. doi:10.1007/BF02064823

    Article  Google Scholar 

  8. Tsyganenko AA, Storozhev PY, Otero Areán C (2004) IR-spectroscopic study of the binding isomerism of adsorbed molecules. Kinet Catal 45:530–540. doi:10.1023/B:KICA.0000038081.43384.56

    Article  CAS  Google Scholar 

  9. Garrone E, Bonelli B, Tsyganenko AA et al (2003) Spectroscopic and thermodynamic characterization of strontium carbonyls formed upon carbon monoxide adsorption on the zeolite Sr-Y. J Phys Chem B 107:2537–2542. doi:10.1021/jp0217841

    Article  CAS  Google Scholar 

  10. Hadjiivanov K, Knözinger H (1999) FTIR spectroscopic evidence of formation of geminal dinitrogen species during the low-temperature N2 adsorption on NaY zeolites. Catal Lett 58:21–26. doi:10.1023/A:1019040825491

    Article  CAS  Google Scholar 

  11. Hadjiivanov K (2000) FTIR study of low-temperature CO adsorption on Cu-ZSM-5: evidence of the formation of Cu2+(CO)2 species. J Catal 191:480–485. doi:10.1006/jcat.1999.2805

    Article  CAS  Google Scholar 

  12. Hadjiivanov K, Ivanova E, Knözinger H (2003) FTIR study of low-temperature CO adsorption on Y zeolite exchanged with Be2+, Mg2+, Ca2+, Sr2+ and Ba2+ cations. Microporous Mesoporous Mater 58:225–236. doi:10.1016/S1387-1811(02)00650-9

    Article  CAS  Google Scholar 

  13. Hadjiivanov K, Knözinger H (2009) Characterization of vacant coordination sites of cations on the surfaces of oxides and zeolites using infrared spectroscopy of adsorbed probe molecules. Surf Sci 603:1629–1636. doi:10.1016/j.susc.2008.09.052

    Article  CAS  Google Scholar 

  14. Hadjiivanov K, Knözinger H, Ivanova E, Dimitrov L (2001) FTIR study of low-temperature CO and 15N2 adsorption on a CaNaY zeolite: formation of site-specified Ca2+(CO)3 and Ca2+(15N2)3 complexes. Phys Chem Chem Phys 3:2531–2536. doi:10.1039/b101782i

    Article  CAS  Google Scholar 

  15. Tsyganenko AA, Denisenko LA, Zverev SM, Filimonov VN (1985) Infrared study of lateral interactions between carbon monoxide molecules adsorbed on oxide catalysts. J Catal 94:10–15

    Article  CAS  Google Scholar 

  16. Scarano D, Spoto G, Bordiga S et al (1992) Lateral interactions in CO adlayers on prismatic ZnO faces: a FTIR and HRTEM study. Surf Sci 276:281–298. doi:10.1016/0039-6028(92)90716-J

    Article  CAS  Google Scholar 

  17. Woodruff DP, Hayden BE, Prince K, Bradshaw AM (1982) Dipole coupling and chemical shifts in IRAS of CO adsorbed on Cu(110). Surf Sci 123:397–412. doi:10.1016/0039-6028(82)90336-3

    Article  CAS  Google Scholar 

  18. Platero EE, Scarano D, Spoto G, Zecchina A (1985) Dipole coupling and chemical shifts of CO and NO adsorbed on oxides and halides with rock-salt structure. Faraday Discuss Chem Soc 80:183. doi:10.1039/dc9858000183

    Article  Google Scholar 

  19. Lamberti C, Zecchina A, Groppo E, Bordiga S (2010) Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem Soc Rev 39:4951–5001. doi:10.1039/c0cs00117a

    Article  CAS  Google Scholar 

  20. Hush NS, Williams ML (1974) Carbon monoxide bond length, force constant and infrared intensity variations in strong electric fields: valence-shell calculations, with applications to properties of adsorbed and complexed CO. J Mol Spectrosc 50:349–368

    Article  CAS  Google Scholar 

  21. Hammaker RM, Francis SA, Eischens RP (1965) Infrared study of intermolecular interactions for carbon monoxide chemisorbed on platinum. Spectrochim Acta 21:1295–1309. doi:10.1016/0371-1951(65)80213-2

    Article  CAS  Google Scholar 

  22. Tsyganenko AA, Zverev SM (1988) Mechanism of lateral interactions between molecules adsorbed on oxide surfaces. React Kinet Catal Lett 36:269–274. doi:10.1007/BF02063817

    Article  CAS  Google Scholar 

  23. Lambert DK (1984) Stark effect of adsorbate vibrations. Solid State Commun 51:297–300. doi:10.1016/0038-1098(84)90691-4

    Article  CAS  Google Scholar 

  24. de Lima ÍP, dos S Politi, Gargano R, Martins JBL (2015) Lateral interaction and spectroscopic constants of CO adsorbed on ZnO. Theor Chem Acc 134:1–8. doi:10.1007/s00214-015-1651-5

    Article  Google Scholar 

  25. Silber D, Kowalski PM, Traeger F et al (2016) Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry. Nat Commun 7:12888. doi:10.1038/ncomms12888

    Article  CAS  Google Scholar 

  26. Tsyganenko AA, Storozheva EN, Manoilova OV (2001) Manifestations of the acidity of adsorbed molecules in H-bonded complexes with silanol groups: Lewis acidity of ozone. Catal Today 70:59–71. doi:10.1016/S0920-5861(01)00407-2

    Article  CAS  Google Scholar 

  27. Tsyganenko AA, Storozheva EN, Manoilova OV et al (2000) Brønsted acidity of silica silanol groups induced by adsorption of acids. Catal Lett 70:159–163. doi:10.1023/A:1018845519727

    Article  CAS  Google Scholar 

  28. Storozheva EN, Sekushin VN, Tsyganenko AA (2006) FTIR spectroscopy evidence for the basicity induced by adsorption. Catal Lett 107:185–188. doi:10.1007/s10562-005-0008-4

    Article  CAS  Google Scholar 

  29. Voronina KV, Tsyganenko AA (2009) FTIR evidence for Lewis acidity induced by adsorption. symposium “Molecular Photonics” dedicated to Academician A.N. Terenin, St. Petersburg, Russia, 2009 (abstract) p 163

  30. Zaki MI, Knözinger H, Tesche B, Mekhemer GAH (2006) Influence of phosphonation and phosphation on surface acid-base and morphological properties of CaO as investigated by in situ FTIR spectroscopy and electron microscopy. J Colloid Interface Sci 303:9–17. doi:10.1016/j.jcis.2006.07.011

    Article  CAS  Google Scholar 

  31. Lange F, Hadjiivanov K, Schmelz H, Knözinger H (1992) Low temperature infrared study of carbon monoxide adsorption on sulfated titania. Catal Letters 16:97–107. doi:10.1007/BF00764359

    Article  CAS  Google Scholar 

  32. Lavalley JC, Saussey J, Tsyganenko AA (1994) IR study of interactions between different molecules CO-adsorbed on ZnO. Surf Sci 315:112–118. doi:10.1016/0039-6028(94)90547-9

    Article  CAS  Google Scholar 

  33. Nichols H (1982) Dipole sums on a surface with fractional coverage: application to enhanced Raman spectra of halide ions on silver. J Chem Phys 76:5595. doi:10.1063/1.442864

    Article  CAS  Google Scholar 

  34. Dai DJ, Ewing GE (1994) Vibrational overtone spectroscopy and coupling effects in monolayer CO on NaCl(100). Surf Sci 312:239–249. doi:10.1016/0039-6028(94)90822-2

    Article  CAS  Google Scholar 

  35. Tsyganenko YA, Tsyganenko AA, Smirnov KS (1993) Fine features caused by lateral interactions in the infrared spectrum of CO adsorbed on ZnO (0 0). Vibr Spectrosc 6:15–23. doi:10.1016/0924-2031(93)87018-O

    Article  CAS  Google Scholar 

  36. Ewing GE (1991) A model system for the study of structure and dynamics of molecules on surfaces: CO on NaCl(100). Intl Rev Phys Chem 10:391. doi:10.1080/01442359109353263

    Article  CAS  Google Scholar 

  37. Heidberg J, Cabigon L, Kampshoff E, Kandel M (1993) In: Freund H-J, Umbach E (eds) Adsorption on ordered surfaces of ionic solids and thin films. Springer, New York, p 46

    Chapter  Google Scholar 

  38. Noda C, Ewing GE (1990) Infrared spectroscopy of CO on NaCl(100) III. Submonolayers and isotopic mixtures. Surf Sci 240:181–192. doi:10.1016/0039-6028(90)90741-P

    Article  CAS  Google Scholar 

  39. Tsyganenko YA, Ermoshin VA, Keyser MR et al (1996) Spectral manifestations of the dynamic interactions between adsorbed molecules. A computer modelling study. Vib Spectrosc 13:11–22. doi:10.1016/0924-2031(96)00016-1

    Article  Google Scholar 

  40. Ermoshin VA, Kazanskii AK (1993) Modeling the collective vibrational excitations in CO isotope mixture adsorbed on Cu (100). Opt Spectrosc 75:1222–1229

    CAS  Google Scholar 

  41. Andrianov DS, Cherevatova AN, Kolomiitsova TD, Shchepkin DN (2009) Modeling of band shapes in the low-temperature molecular liquid spectra affected by resonance dipole-dipole interaction. Chem Phys 364:69–75. doi:10.1016/j.chemphys.2009.08.013

    Article  CAS  Google Scholar 

  42. Dobrotvorskaia AN, Kolomiitsova TD, Petrov SN et al (2015) Effect of resonance dipole–dipole interaction on spectra of adsorbed SF6 molecules. Spectrochim Acta A 148:271–279. doi:10.1016/j.saa.2015.04.002

    Article  CAS  Google Scholar 

  43. Burtsev AP, Bocharov VN, Gulidova OS et al (2008) The vibrational spectrum of the OCS molecule based on the data on spectra of liquid and cryosolutions. Opt Spectrosc 105:242–250. doi:10.1134/S0030400X08080122

    Article  Google Scholar 

  44. Kolomiitsova TD, Lyaptsev AV, Shchepkin DN (2000) Determination of parameters of the dipole moment of the CO2 molecule. Opt Spectrosc 88:648–660

    Article  CAS  Google Scholar 

  45. Kolomiitsova TD, Burtsev AP, Fedoseev VG, Shchepkin DN (1998) Manifestation of interaction of the transition dipole moments in IR spectra of low-temperature liquids and solutions in liquefied noble gases. Chem Phys 238:315–327

    Article  CAS  Google Scholar 

  46. Kolomiitsova TD, Kondaurov VA, Sedelkova EV, Shchepkin DN (2002) Isotope effects in the vibrational spectrum of the SF6 molecule. Opt Spectrosc 92:512–516

    Article  CAS  Google Scholar 

  47. Sverdlov LM, Kovner MA, Krainov EP (1974) Vibrational spectra of polyatomic molecules. Wiley, New York

    Google Scholar 

  48. Pearce HA, Sheppard N (1976) Possible Importave of a metal-surface selection rule in the interpretation og the infrared specta of molecules adsorbed on particulate metals. Surf Sci 59:205–217

    Article  CAS  Google Scholar 

  49. Thomas P, Xia Y, Boyd DA et al (2009) Study of SF6 adsorption on graphite using infrared spectroscopy. J Chem Phys 131:124709. doi:10.1063/1.3226561

    Article  Google Scholar 

  50. Dobrotvorskaia AN, Gatilova AV, Murzin PD et al (2017) Effect of resonance dipole-dipole interaction on the spectra of adsorbed CF4. J Photochem Photobiol A (in print)

Download references

Acknowledgements

The work was supported by a Grant of the Government of Russian Federation No 14.Z50.31.0016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Tsyganenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrotvorskaia, A.N., Pestsov, O.S. & Tsyganenko, A.A. Lateral Interaction between Molecules Adsorbed on the Surfaces of Non-Metals. Top Catal 60, 1506–1521 (2017). https://doi.org/10.1007/s11244-017-0835-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0835-8

Keywords

Navigation