Skip to main content
Log in

Relation between individual properties of alloy components and anodic behavior of multicomponent alloys in acidic environments: I. Active dissolution and passivation of Fe-Cr alloys in sulfuric acid solutions

  • General Corrosion Problems
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The active dissolution and passivation of Fe-Cr alloys are analyzed with the use of concepts of the appearance, operation, and blockade of active dissolution sites on the actual metal surface. General regularities of the effect of chromium on the rate of the anodic process at the change in the alloy composition and electrode potential are considered. The less noble, but easily passivable chromium component provides a dual effect on the anodic behavior of the binary alloys; it stimulates the anodic reaction at the low content in the alloy and suppresses the process at the high content. The principally different electrochemical properties of the alloy components result in the step-by-step passivation of the alloy with an increase in the potential, which is reflected by regular breaks in perfect anodic curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oliver, R., Comite International de Termodynamique et de Cinetique Electrochemiques (CITCE), London, 1954, p. 314.

  2. Shiobara, K., Sawada, Y., and Morioka, S., Nippon Kinzoku Gakkai-Si, 1963, vol. 27, no. 9, p. 413.

    Google Scholar 

  3. Littlewood, R., Corros. Sci., 1963, vol. 3, no. 2, p. 99.

    Article  CAS  Google Scholar 

  4. Green, N.D. and Leonard, R.B., Electrochem. Acta, 1964, no. 1, p. 43.

  5. Tomashov, N.D. and Chernova, G.P., Passivnost’ i zashchita metallov ot korrozii (Passivity and Corrosion Protection of Metals), Moscow: Nauka, 1965.

    Google Scholar 

  6. Freiman, L.I., Makarov, V.A., and Bryksin, I.E., Potentsiostaticheskie metody v korrozionnykh issledovaniyakh i elektrokhimicheskoi zashchite (Potentiostatic Methods in Corrosion Studies and Electrochemical Protection), Moscow: Khimiya, 1972.

    Google Scholar 

  7. Leigraf, K., Hultqwist, G., Olefjord, I., et al., Zashch. Met., 1979, vol. 15, no. 4, p. 395.

    Google Scholar 

  8. Mirolyubov, E.N. and Razygraev, V.P., in Korroziya i zashchita metallov (Corrosion and Protection of Metals), Moscow: Nauka, 1970, p. 180.

    Google Scholar 

  9. Razygraev, V.P., Lebedeva, M.V., and Ponomareva, E.Yu., Korroz.: Mater., Zashch., 2007, no. 5, p. 7.

  10. Razygraev, V.P., Lebedeva, M.V., and Pisarenko, T.A., Korroz.: Mater., Zashch., 2007, no. 12, p. 1.

  11. Razygraev, V.P. and Lebedeva, M.V., Korroz.: Mater., Zashch., 2008, no. 10, p. 1.

  12. Razygraev, V.P., Lebedeva, M.V., Ponomareva, E.Yu., and Spitsyn, V.I., Dokl. Akad. Nauk SSSR, 1987, vol. 294, no. 3, p. 642.

    CAS  Google Scholar 

  13. Mirolyubov, E.N. and Razygraev, V.P., Zashch. Met., 1966, vol. 2, no. 6, p. 636.

    CAS  Google Scholar 

  14. Kabanov, B.N. and Leikis, D.I., Dokl. Akad. Nauk SSSR, 1947, vol. 58, no. 8, p. 1685.

    CAS  Google Scholar 

  15. Cabanov, B.N., Burstein, R.X., and Frumkin, A.N., Disc. Faraday Soc., 1947, vol. 1, p. 259.

    Google Scholar 

  16. Bonhoeffer, K.F. and Heusler, K.E., Z. Phys. Chem., 1956, vol. 8, p. 390.

    Google Scholar 

  17. Kabanov, B.N., Elektrokhimiya metallov i adsorbtsiya (Electrochemistry of Metals and Adsorption), Moscow: Nauka, 1966.

    Google Scholar 

  18. Florianovich, G.M., Itogi Nauki Tekhn. Ser. Korroz. Zashch. Korroz., Moscow: VINITI, 1978, vol. 6, p. 136.

    Google Scholar 

  19. Sukhotin, A.M. and Lisovaya, E.V., Itogi Nauki Tekhn. Ser. Korroz. Zashch. Korroz., Moscow: VINITI, 1986, vol. 12, p. 61.

    Google Scholar 

  20. Okuyama, M., Kawakami, M., and Ito, K., Electrochim, Acta, 1985, vol. 30, no. 6, p. 757.

    Article  CAS  Google Scholar 

  21. Novakovskii, V.M., Zashch. Met., 1979, vol. 15, no. 1, p. 3.

    CAS  Google Scholar 

  22. Stranskii, I.L. and Kaishev, R., Usp. Fiz. Nauk, 1939, vol. 21, no. 4, p. 408.

    Google Scholar 

  23. Kolotyrkin, Ya.M., in Korroziya khimicheskoi apparatury (Corrosion of Chemical Equipment), Moscow: MIKhM, 1975, issue 67, p. 5.

    Google Scholar 

  24. Kolotyrkin, Ya.M., Gorodetskii, V.V., Bukin, A.L., and Losev, V.V., Dokl. Akad. Nauk SSSR, 1975, vol. 225, no. 4, p. 858.

    CAS  Google Scholar 

  25. Skorchelleti, V.V., Teoreticheskie osnovy korrozii metallov (Theoretical Principles of Metal Corrosion), Leningrad: Khimiya, 1973.

    Google Scholar 

  26. Plaskeev, A.V., Knyazheva, V.M., Kolotyrkin, Ya.M., and Kozhevnikov, V.B., Zashch. Met., 1981, vol. 17, no. 6, p. 661.

    CAS  Google Scholar 

  27. Plaskeev, A.V., Kasparova, O.V., and Kolotyrkin, Ya.M., Zashch. Met., 1984, vol. 20, no. 1, p. 62.

    CAS  Google Scholar 

  28. Razygraev, V.P. and Lebedeva, M.V., Korroz.: Mater. Zashch., 2009, no. 6, p. 26.

  29. Heusler, K.E. and Cartledge, G.R., J. Electrochem. Soc., 1961, vol. 108, no. 8, p. 732.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Razygraev.

Additional information

Original Russian Text © V.P. Razygraev, M.V. Lebedeva, published in Korroziya: Materialy, Zashchita, 2009, No. 8, pp. 5–11.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razygraev, V.P., Lebedeva, M.V. Relation between individual properties of alloy components and anodic behavior of multicomponent alloys in acidic environments: I. Active dissolution and passivation of Fe-Cr alloys in sulfuric acid solutions. Prot Met Phys Chem Surf 46, 748–754 (2010). https://doi.org/10.1134/S2070205110070026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205110070026

Keywords

Navigation