Skip to main content
Log in

Use of Microalgae Biomass to Synthesize Marketable Products: 4. Production of Biofuels from Microalgae Using Bioengineering Approaches

  • BIOCATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The paper provides a review of reports on the results of studies in the field of microalgae biomass cultivation and conversion to marketable chemicals using modern bioengineering approaches. The review discusses approaches to producing biofuels (biodiesel, ethanol, hydrogen) from microalgae. Data on biomass pretreatment methods and various procedures for isolating metabolites and converting them to biofuels are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Piligaev, A.V., Sorokina, K.N., and Parmon, V.N., Vestn. Novosib. Gos. Univ., Ser. Biol. Klin. Med., 2015, vol. 13, no. 4, pp. 19–26.

    Google Scholar 

  2. Nepstad, D.C., Stickler, C.M., and Soares-Filho, B., and Merry, F., Philos. Trans. R. Soc., B, 2008, vol. 363, no. 1498, pp. 1737–1746. https://doi.org/10.1098/rstb.2007.0036

  3. Vasilenko, A.P., Ivannikova, E.M., Sister, V.G., Yamchuk, A.I., Tsedilin, A.N., and Ivannikova, Yu.M., Tekhn. Nauki Teor. Prakt., 2015, vol. 47, pp. 63–68.

    Google Scholar 

  4. Sorokina, K.N., Yakovlev, V.A., Piligaev, A.V., Kukushkin, R.G., Pel’tek, S.E., Kolchanov, N.A., and Parmon, V.N., Catal. Ind., 2012, vol. 4, no. 3, pp. 202–208. https://doi.org/10.1134/S2070050412030117

    Article  Google Scholar 

  5. Kafarov, V. and González Delgado, Á.-D., CT&F, Cienc., Tecnol. Futuro, 2011, vol. 4, no. 4, pp. 5–22. https://doi.org/10.29047/01225383.225

    Article  Google Scholar 

  6. Slade, R. and Bauen, A., Biomass Bioenergy, 2013, vol. 53, pp. 29–38. https://doi.org/10.1016/j.biombioe.2012.12.019

    Article  Google Scholar 

  7. Solovchenko, A.E., Lobakova, E.S., Barskii, E.L., Savanina, Ya.V., Luk’yanov, A.A., and Karpichnikov, M.P., Biotekhnologiya, 2011, vol. 6, pp. 70–88.

    Google Scholar 

  8. Freedman, B., Butterfield, R.O., and Pryde, E.H., J. Am. Oil Chem. Soc., 1986, vol. 63, no. 10, pp. 1375–1380. https://doi.org/10.1007/BF02679606

    Article  CAS  Google Scholar 

  9. Piligaev, A.V., Sorokina, K.N., Samoilova, Yu.V., and Parmon, V.N., Catal. Ind., 2019, vol. 11, no. 4, pp. 349–359. https://doi.org/10.1134/S207005041904007X

    Article  Google Scholar 

  10. Nematian, T., Shakeri, A., Salehi, Z., and Saboury, A.A., Biotechnol. Biofuels, 2020, vol. 13, article no. 57. https://doi.org/10.1186/s13068-020-01688-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nematian, T., Salehi, Z., and Shakeri, A., Renewable Energy, 2020, vol. 146, pp. 1796–1804. https://doi.org/10.1016/j.renene.2019.08.048

    Article  CAS  Google Scholar 

  12. Aghabeigi, F., Nikkhah, H., Zilouei, H., and Bazarganipour, M., Process Biochem., 2023, vol. 126, pp. 171–185. https://doi.org/10.1016/j.procbio.2023.01.012

    Article  CAS  Google Scholar 

  13. Picó, E.A., López, C., Cruz-Izquierdo, Á., Munarriz, M., Iruretagoyena, F.J., Serra, J.L., and Llama, M.J., J. Biosci. Bioeng., 2018, vol. 126, no. 4, pp. 451–457. https://doi.org/10.1016/j.jbiosc.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  14. de Vasconcellos, A., Miller, A.H., Aranda, D.A.G., and Nery, J.G., Colloids Surf., B, 2018, vol. 165, pp. 150–157. https://doi.org/10.1016/j.colsurfb.2018.02.029

    Article  CAS  Google Scholar 

  15. Brennan, L. and Owende, P., Renewable Sustainable Energy Rev., 2010, vol. 14, no. 2, pp. 557–577. https://doi.org/10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  16. Makareviciene, V., Gumbyte, M., and Sendzikiene, E., Food Bioprod. Process., 2019, vol. 116, pp. 89–97. https://doi.org/10.1016/j.fbp.2019.05.002

    Article  CAS  Google Scholar 

  17. Navarro López, E., Robles Medina, A., Esteban Cerdán, L., González, Moreno, P.A., Macías Sánchez, M.D., and Molina Grima, E., Biomass Bioenergy, 2016, vol. 93, pp. 6–12. https://doi.org/10.1016/j.biombioe.2016.06.018

    Article  CAS  Google Scholar 

  18. He, Y., Wang, X., Wei, H., Zhang, J., Chen, B., and Chen, F., Biotechnol Biofuels, 2019, vol. 12, article no. 78. https://doi.org/10.1186/s13068-019-1418-7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guldhe, A., Singh, P., Renuka, N., and Bux, F., Fuel, 2019, vol. 237, pp. 1112–1118. https://doi.org/10.1016/j.fuel.2018.10.033

    Article  CAS  Google Scholar 

  20. Xie, D., Ji, X., Zhou, Y., Dai, J., He, Y., Sun, H., Guo, Z., Yang, Y., Zheng, X., and Chen, B., Bioresour. Technol., 2022, vol. 349, article no. 126886. https://doi.org/10.1016/j.biortech.2022.126886

    Article  CAS  PubMed  Google Scholar 

  21. Sánchez-Bayo, A., Morales, V., Rodríguez, R., Vicente, G., and Bautista, L.F., Catalysts, 2019, vol. 9, no. 3, article no. 296. https://doi.org/10.3390/catal9030296

    Article  CAS  Google Scholar 

  22. Liu, Y., Chen, D., Yan, Y., Peng, C., and Xu, L., Bioresour. Technol., 2011, vol. 102, no. 22, pp. 10414–10418. https://doi.org/10.1016/j.biortech.2011.08.056

    Article  CAS  PubMed  Google Scholar 

  23. Bauer, G., Lima, S., Chenevard, J., Sugnaux, M., and Fischer, F., ACS Sustainable Chem. Eng., 2017, vol. 5, no. 2, pp. 1931–1937. https://doi.org/10.1021/acssuschemeng.6b02665

    Article  CAS  Google Scholar 

  24. Lai, J.-Q., Hu, Z.-L., Wang, P.-W., and Yang, Z., Fuel, 2012, vol. 95, pp. 329–333. https://doi.org/10.1016/j.fuel.2011.11.001

    Article  CAS  Google Scholar 

  25. Lozano, P., Bernal, J.M., Gómez, C., Álvarez, E., Markiv, B., García-Verdugo, E., and Luis, S.V., Catal. Today, 2020, vol. 346, pp. 87–92. https://doi.org/10.1016/j.cattod.2019.01.073

    Article  CAS  Google Scholar 

  26. Lozano, P., Bernal, J.M., and Vaultier, M., Fuel, 2011, vol. 90, no. 11, pp. 3461–3467. https://doi.org/10.1016/j.fuel.2011.06.008

    Article  CAS  Google Scholar 

  27. Lozano, P., Bernal, J.M., Garcia-Verdugo, E., Sanchez-Gomez, G., Vaultier, M., Burguete, M.I., and Luis, S.V., Green Chem., 2015, vol. 17, no. 7, pp. 3706–3717. https://doi.org/10.1039/C5GC00894H

    Article  CAS  Google Scholar 

  28. Lakatos, G.E., Ranglová, K., Manoel, J.C., Grivalský, T., Kopecký, J., and Masojídek, J., Folia Microbiol. (Prague, Czech Repub.), 2019, vol. 64, no. 5, pp. 627–644. https://doi.org/10.1007/s12223-019-00732-0

  29. Hernández, D., Riano, B., Riaño, M., and García-González, M.C., Chem. Eng. J., 2015, vol. 262, pp. 939–945. https://doi.org/10.1016/j.cej.2014.10.049

    Article  CAS  Google Scholar 

  30. Taleb, A., Kandilian, R., Touchard, R., Montalescot, V., Rinaldi, T., Taha, S., Takache, H., Marchal, L., Legrand, J., and Pruvost, J., Bioresour. Technol., 2016, vol. 218, pp. 480–490. https://doi.org/10.1016/j.biortech.2016.06.086

    Article  CAS  PubMed  Google Scholar 

  31. Möllers, K.B., Cannella, D., Jørgensen, H., and Frigaard, N.-U., Biotechnol. Biofuels, 2014, vol. 7, article no. 64. https://doi.org/10.1186/1754-6834-7-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hossain, M.N.B., Basu, J.K., and Mamun, M., Procedia Eng., 2015, vol. 105, pp. 733–738. https://doi.org/10.1016/j.proeng.2015.05.064

    Article  CAS  Google Scholar 

  33. Kim, H.M., Wi, S.G., Jung, S., Song, Y., and Bae, H.-J., Bioresour. Technol., 2015, vol. 175, pp. 128–134. https://doi.org/10.1016/j.biortech.2014.10.050

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen, M.T., Choi, S.P., Lee, J., Lee, J.H., and Sim, S.J., J. Microbiol. Biotechnol., 2009, vol. 19, no. 2, pp. 161–166. https://doi.org/10.4014/jmb.0810.578

    Article  CAS  PubMed  Google Scholar 

  35. Ho, S.-H., Chen, Y.-D., Chang, C.-Y., Lai, Y.-Y., Chen, C.-Y., Kondo, A., Ren, N.-Q., and Chang, J.-S., Biotechnol. Biofuels, 2017, vol. 10, article no. 27. https://doi.org/10.1186/s13068-017-0712-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, N., Zhang, Y., Wu, X., Gong, X., and Wang, Q., Bioresour. Technol., 2011, vol. 102, no. 21, pp. 10158–10161. https://doi.org/10.1016/j.biortech.2011.08.051

    Article  CAS  PubMed  Google Scholar 

  37. Shokrkar, H., Ebrahimi, S., and Zamani, M., Fuel, 2017, vol. 200, pp. 380–386. https://doi.org/10.1016/j.fuel.2017.03.090

    Article  CAS  Google Scholar 

  38. Harun, R., Jason, W.S.Y., Cherrington, T., and Danquah, M.K., Appl. Energy, 2011, vol. 88, no. 10, pp. 3464–3467. https://doi.org/10.1016/j.apenergy.2010.10.048

    Article  CAS  Google Scholar 

  39. Miranda, J.R., Passarinho, P.C., and Gouveia, L., Appl. Microbiol. Biotechnol., 2012, vol. 96, no. 2, pp. 555–564. https://doi.org/10.1007/s00253-012-4338-z

    Article  CAS  PubMed  Google Scholar 

  40. Megawati, Bahlawan, Z.A.S., Damayanti, A., Putri, R.D.A., Triwibowo, B., Prasetiawan, H., Aji, S.P.K., and Prawisnu, A., Mater. Today: Proc., 2022, vol. 63, suppl. 1, pp. S373–S378. https://doi.org/10.1016/j.matpr.2022.03.551

    Article  CAS  Google Scholar 

  41. Ajit, A., Sulaiman, A.Z., and Chisti, Y., Food Bioprod. Process., 2017, vol. 102, pp. 123–135. https://doi.org/10.1016/j.fbp.2016.12.006

    Article  CAS  Google Scholar 

  42. Rastogi, M. and Shrivastava, S., Renewable Sustainable Energy Rev., 2017, vol. 80, pp. 330–340. https://doi.org/10.1016/j.rser.2017.05.225

    Article  Google Scholar 

  43. Condor, B.E., de Luna, M.D.G., Chang, Y.-H., Chen, J.-H., Leong, Y.K., Chen, P.-T., Chen, C.-Y., Lee, D.-J., and Chang, J.-S., Bioresour. Technol., 2022, vol. 363, article no. 128002. https://doi.org/10.1016/j.biortech.2022.128002

    Article  CAS  PubMed  Google Scholar 

  44. Ho, S.-H., Huang, S.-W., Chen, C.-Y., Hasunuma, T., Kondo, A., and Chang, J.-S., Bioresour. Technol., 2013, vol. 135, pp. 191–198. https://doi.org/10.1016/j.biortech.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  45. Aikawa, S., Inokuma, K., Wakai, S., Sasaki, K., Ogino, C., Chang, J.-S., Hasunuma, T., and Kondo, A., Biotechnol. Biofuels, 2018, vol. 11, article no. 50. https://doi.org/10.1186/s13068-018-1050-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aikawa, S., Joseph, A., Yamada, R., Izumi, Y., Yamagishi, T., Matsuda, F., Kawai, H., Chang, J.-S., Hasunuma, T., and Kondo, A., Energy Environ. Sci., 2013, vol. 6, no. 6, pp. 1844–1849. https://doi.org/10.1039/C3EE40305J

    Article  CAS  Google Scholar 

  47. Li, S., Li, F., Zhu, X., Liao, Q., Chang, J.-S., and Ho, S.-H., Chemosphere, 2022, vol. 291, part 1, article no. 132717. https://doi.org/10.1016/j.chemosphere.2021.132717

    Article  CAS  PubMed  Google Scholar 

  48. Ahmed, S.F., Mofijur, M., Nahrin, M., Chowdhury, S.N., Nuzhat, S., Alherek, M., Rafa, N., Ong, H.C., Nghiem, L.D., and Mahlia, T.M.I., Int. J. Hydrogen Energy, 2022, vol. 47, no. 88, pp. 37321–37342. https://doi.org/10.1016/j.ijhydene.2021.09.178

    Article  CAS  Google Scholar 

  49. Happe, T., Schütz, K., and Böhme, H., J. Bacteriol., 2000, vol. 182, no. 6, pp. 1624–1631. https://doi.org/10.1128/jb.182.6.1624-1631.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Torzillo, G., Scoma, A., Faraloni, C., Ena, A., and Johanningmeier, U., Int. J. Hydrogen Energy, 2009, vol. 34, no. 10, pp. 4529–4536. https://doi.org/10.1016/j.ijhydene.2008.07.093

    Article  CAS  Google Scholar 

  51. Manoyan, J., Samovich, T., Kozel, N., Demidchik, V., and Gabrielyan, L., Int. J. Hydrogen Energy, 2022, vol. 47, no. 38, pp. 16815–16823. https://doi.org/10.1016/j.ijhydene.2022.03.194

    Article  CAS  Google Scholar 

  52. Laurinavichene, T.V., Fedorov, A.S., Ghirardi, M.L., Seibert, M., and Tsygankov, A.A., Int. J. Hydrogen Energy, 2006, vol. 31, no. 5, pp. 659–667. https://doi.org/10.1016/j.ijhydene.2005.05.002

    Article  CAS  Google Scholar 

  53. Kosourov, S.N., Ghirardi, M.L., and Seibert, M., Int. J. Hydrogen Energy, 2011, vol. 36, no. 3, pp. 2044–2048. https://doi.org/10.1016/j.ijhydene.2010.10.041

    Article  CAS  Google Scholar 

  54. Kosourov, S., Tsygankov, A., Seibert, M., and Ghirardi, M.L., Biotechnol. Bioeng., 2002, vol. 78, no. 7, pp. 731–740. https://doi.org/10.1002/bit.10254

    Article  CAS  PubMed  Google Scholar 

  55. Xia, A., Cheng, J., Song, W., Su, H., Ding, L., Lin, R., Lu, H., Liu, J., Zhou, J., and Cen, K., Renewable Sustainable Energy Rev., 2015, vol. 51, pp. 209–230. https://doi.org/10.1016/j.rser.2015.05.076

    Article  CAS  Google Scholar 

  56. Das, D. and Veziroǧlu, T.N., Int. J. Hydrogen Energy, 2001, vol. 26, no. 1, pp. 13–28. https://doi.org/10.1016/S0360-3199(00)00058-6

    Article  CAS  Google Scholar 

  57. Wang, Y., Ho, S.-H., Yen, H.-W., Nagarajan, D., Ren, N.-Q., Li, S., Hu, Z., Lee, D.-J., Kondo, A., and Chang, J.-S., Biotechnol. Adv., 2017, vol. 35, no. 8, pp. 1049–1059. https://doi.org/10.1016/j.biotechadv.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  58. Yun, Y.-M., Jung, K.-W., Kim, D.-H., Oh, Y.-K., and Shin, H.-S., Int. J. Hydrogen Energy, 2012, vol. 37, no. 20, pp. 15533–15539. https://doi.org/10.1016/j.ijhydene.2012.02.017

    Article  CAS  Google Scholar 

  59. Nobre, B.P., Villalobos, F., Barragán, B.E., Oliveira, A.C., Batista, A.P., Marques, P.A.S.S., Mendes, R.L., Sovová, H., Palavra, A.F., and Gouveia, L., Bioresour. Technol., 2013, vol. 135, pp. 128–136. https://doi.org/10.1016/j.biortech.2012.11.084

    Article  CAS  PubMed  Google Scholar 

  60. Batista, A.P., Moura, P., Marques, P.A.S.S., Ortigueira, J., Alves, L., and Gouveia, L., Fuel, 2014, vol. 117, part A, pp. 537–543. https://doi.org/10.1016/j.fuel.2013.09.077

  61. Yang, Z., Guo, R., Xu, X., Fan, X., and Li, X., Int. J. Hydrogen Energy, 2010, vol. 35, no. 18, pp. 9618–9623. https://doi.org/10.1016/j.ijhydene.2010.07.017

    Article  CAS  Google Scholar 

  62. Roy, S., Kumar, K., Ghosh, S., and Das, D., Biomass Bioenergy, 2014, vol. 61, pp. 157–166. https://doi.org/10.1016/j.biombioe.2013.12.006

    Article  CAS  Google Scholar 

  63. Wieczorek, N., Kucuker, M.A., and Kuchta, K., Appl. Energy, 2014, vol. 132, pp. 108–117. https://doi.org/10.1016/j.apenergy.2014.07.003

    Article  CAS  Google Scholar 

  64. Xia, A., Cheng, J., Ding, L., Lin, R., Song, W., Zhou, J., and Cen, K., Appl. Energy, 2014, vol. 120, pp. 23–30. https://doi.org/10.1016/j.apenergy.2014.01.045

    Article  CAS  Google Scholar 

  65. Yang, Z., Guo, R., Xu, X., Fan, X., and Luo, S., Appl. Energy, 2011, vol. 88, no. 10, pp. 3468–3472. https://doi.org/10.1016/j.apenergy.2010.09.009

    Article  CAS  Google Scholar 

  66. Efremenko, E.N., Nikolskaya, A.B., Lyagin, I.V., Senko, O.V., Makhlis, T.A., Stepanov, N.A., Maslova, O.V., Mamedova, F., and Varfolomeev, S.D., Bioresour. Technol., 2012, vol. 114, pp. 342–348. https://doi.org/10.1016/j.biortech.2012.03.049

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 17-73-30032-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Samoylova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoylova, Y.V., Sorokina, K.N. & Parmon, V.N. Use of Microalgae Biomass to Synthesize Marketable Products: 4. Production of Biofuels from Microalgae Using Bioengineering Approaches. Catal. Ind. 16, 89–101 (2024). https://doi.org/10.1134/S2070050424010069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050424010069

Keywords:

Navigation