Skip to main content
Log in

Modern Level of Catalysts and Technologies for the Conversion of Natural Gas into Syngas

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The level of the main catalysts and industrial technologies for the conversion of natural gas into syngas further convrted into ammonia, methanol, and H2 was analyzed. The main trends in their development, aimed at reducing the energy and resources consumption, were described including process flowsheets, catalysts, and sorbents at different stages of methane reforming and CO steam reforming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. BP Official Website, BP Energy Outlook, 2020. https://www.bp.com/content/dam/bp/business-sites/ en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2020.pdf. Cited January 17, 2022.

  2. Nexant Official Website. Natural Gas as C1 Chemicals Feedstock—2016 Update, 2016. https://www.nexanteca.com/reports/natural-gas-c1-chemicals-feedstock-2016-update. Cited January 17, 2022.

  3. Enerdata Official Website. https://yearbook.enerdata.ru/natural-gas/world-natural-gas-production-statistics.html. Cited April 12, 2021.

  4. Devaney, M.T., Natural Gas. (229.2000). Chemical Economics Handbook, IHS Chemical, 2013. http://cdn.ihs.com/www/pdf/IHS-Chemical-Economics-Handbook-brochure-feb-2013.pdf. Cited January 17, 2022.

  5. OECD Official Website, The Future of Petrochemicals. Towards More Sustainable Plastics and Fertilizers, 2018. https://www.oecd.org/publications/the-future-of-petrochemicals-9789264307414-en.htm. Cited January 17, 2022.

  6. Aminev, S. Kh., Vestn. Khim. Prom-sti, 2016. http://vestkhimprom.ru/posts/glubokaya-pererabotka-gaza-i-nefti-kak-klyuch-resheniya-problemy-importozameshcheniya-v-oblasti-khimii-i-neftekhimii. Cited November 17, 2020.

  7. Choudhary, T.V. and Vasant, R.C., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, pp. 1828–1847.

    Article  CAS  Google Scholar 

  8. Trabulsy, J., Ammonia, Process Evaluation and Research Planning, Nexant ThinkingTM, 2014, report PERP-2014-6.

  9. Haggin, J., Chem. Eng. News, 1992, vol. 70, pp. 33–35.

    Google Scholar 

  10. Vodorodnaya ekonomika: novye nadezhdy na uspekh (Hydrogen Economics: New Hopes for Success), Moscow: Anal. Tsentr Pravit. Ross. Fed., 2019. https://ac.gov.ru/news/page/vodorodnaa-ekonomika-novye-nadezdy-na-uspeh-22857. Cited January 17, 2022.

  11. Ramos, L. and Zeppieri, S., Fuel, 2013, vol. 110, pp. 141–152.

    Article  CAS  Google Scholar 

  12. Haldor Topsoe Official Website. Ammonia/Co-production. https://www.topsoe.com/processes/ammonia/co-production. Cited November 1, 2020.

  13. Proizvodstvo ammiaka, mineral’nykh udobrenii i neorganicheskikh kislot. Informatsionno-tekhnicheskii spravochnik po nailuchshim dostupnym tekhnologiyam (Production of Ammonia, Mineral Fertilizers, and Inorganic Acids. Information and Technical Handbook on the Best Available Technologies), Moscow: Byuro NDT, 2019.

  14. Zhigareva, G.V., Vestn. Khim. Prom-sti, 2019. http:// vestkhimprom.ru/posts/ammiak-istoriya-sovremennost-i-perspektivy-razvitiya-v-rossii. Cited May 20, 2021.

  15. RUPEC Official Website. http://www.rupec.ru/ news/41274/. Cited September 11, 2020.

  16. METARAX CHEMICALS Official Website. http:// www.metafrax.ru/ru/p/128. Cited September 11, 2020.

  17. SCHEKINOAZOT United Chemical Company Official Website. http://n-azot.ru/news.php?news_id= 1510&lang=RU. Cited September 11, 2020.

  18. Davis, S., Petrochemical Industry Overview (350.000). Chemical Economics Handbook, IHS Chemical, 2015.

    Google Scholar 

  19. Sriram, P., Nash, M., and Maronneaud, O., Methanol (674.5000). Chemical Economics Handbook, IHS Chemical, 2014.

    Google Scholar 

  20. Argusmedia Official Website. Global Methanol Demand, 2018. https://www.argusmedia.com/-/media/ 090F0C06A6A396546B3698F913E6A1AC54DEAE8E. Cited November 6, 2020.

  21. REFINITIV Official Website. https://www.refinitiv.ru/blog/market-insights/kratkij-obzor-rossijskogo-rynka-metanola-po-itogam-2019/. Cited May 20, 2021.

  22. SCHEKINOAZOT United Chemical Company Official Website. http://n-azot.ru/about.php. Cited November 9, 2020.

  23. Da Silva, M.J., Fuel Process. Technol., 2016, vol. 145, pp. 42–61.

    Article  CAS  Google Scholar 

  24. Ott, J., Gronemann, V., Pontzen, F., Fiedler, E., Grossmann, G., Kersebohm, B., Weiss, G., and Witte, C., in Ullmann’s Encyclopedia of Technical Chemistry, Weinheim: Wiley-VCH, 2013.

    Google Scholar 

  25. BCC Research Official Website. Merchant Hydrogen: Industrial Gas and Energy Markets, 2015, report CHM042C. https://www.bccresearch.com/market-research/chemicals/merchant-hydrogen-industrial-gas-market-chm042c.html. Cited January 17, 2022.

  26. GasWorld. Rossiya i SNG, 2014, no. 34, pp. 20–23. https://www.google.com/url?q=https://gasworld.ru/ uploads/issues/d/2014/27052014_120941.pdf&sa= U&ved=2ahUKEwjvzbbzo7n1AhVRAxAIHRMUBy8QFnoECAQQAg&usg=AOvVaw0r5a0yzlHdOpyD4Cgrt9kr

  27. CREON Energy Official Website. http://www.creonenergy.ru/consulting/detailConf.php?ID=101824. Cited July 15, 2017.

  28. Meleloe, K. and Walwyn, D., S. Afr. J. Bus. Manage., 2016, vol. 47, no. 3, pp. 63–72.

    Google Scholar 

  29. Naqvi, S.N., Synthesis Gas Production from Natural Gas Reforming, IHS Chemical, 2013, report PEP148B.

  30. You, Y.W., Lee, D.G., Kim, K.H., Oh, M., and Lee, C.H., Chem. Eng. Sci., 2012, vol. 68, pp. 413–423.

    Article  CAS  Google Scholar 

  31. Hydrocarbon Processing Constructions Boxscore Database. https://www.constructionboxscore.com/project-news/air-products-to-build-new-texas-methane-reformer-for-downstream-users.aspx. Cited November 23, 2020.

  32. Air Liquide Official Website. https://www.airliquide.com/industry/chemicals. Cited November 3, 2020.

  33. Linde Engineering Official Website. https://www.linde-engineering.com/en/process-plants/hydrogen_and_ synthesis_gas_plants/gas_generation/steam_reforming/ index.html. Cited November 23, 2020.

  34. Trabulsy, J. and Chu, R., Hydrogen Production in Refineries, Nexant ThinkingTM, 2013, report PERP 2013S3.

  35. McWilliams, A., Catalysts for Environmental and Energy Applications, BCC Research, 2015, report CHM020E.

  36. Rostrup-Nielsen, J.R. and Rostrup-Nielsen, T., Large-scale Hydrogen Production. https://www.topsoe.com/sites/default/files/topsoe_large_scale_hydrogen_produc.pdf. Cited June 6, 2017.

  37. US Patent 7449167, 2008.

  38. Kumar, A., Baldea, M., and Edgar, T.F., Comput. Chem. Eng., 2017, vol. 105, pp. 224–236.

    Article  CAS  Google Scholar 

  39. Brunson, R., Flessner, U., and Morse, P., Catalysis, 2013, pp. 41–49. https://ru.scribd.com/document/ 398823433/2013-catalysis#. Cited January 17, 2022.

  40. US Patent 5685890, 1997.

  41. US Patent 5753143, 1998.

  42. US Patent 6984371, 2006.

  43. US 2009/02204113, 2009.

  44. Hydroprocessing of Heavy Oils and Residua, Ancheyta, J., and Speight, J.G., Eds., Boca Raton, FL: CRC Press/Taylor & Francis Group, 2007.

    Google Scholar 

  45. US Patent 7767619, 2010.

  46. US Patent 7771586, 2010.

  47. Süd-Chemie India Official Website. http://www.sud-chemie-india.com/uploads/documents/ammonia/ 1.%20%20Reforming%20Catalyst.pdf. Cited August 2, 2017.

  48. Haldor Topsoe Official Website. RC-67 TitanTM. https://www.topsoe.com/products/catalysts/rc-67-titantm?hsLang=en. Cited May 26, 2021.

  49. Yamazaki, O., Tomishige, K., and Fujimoto, K., Appl. Catal., A., 1996, vol. 136, pp. 49–56.

  50. WO Patent 2014/048740, 2014.

  51. US Patent 2015/0231608, 2015.

  52. Handbook of Petroleum Refining, Speight, J.G., Ed., Boca Raton, FL: CRC Press/Taylor & Francis Group LLC, 2017.

    Google Scholar 

  53. Haldor Topsoe Official Website. Hydrogen. https:// www.topsoe.com/ru/tehnologii/vodorod. Cited July 20, 2017.

  54. Haldor Topsoe Official Website. Hydrogen/Reforming. https://www.topsoe.com/ru/processes/hydrogen/reforming. Cited May 20, 2021.

  55. Meloni, E., Martino, M., and Palma, V., Catalysts, 2020, vol. 10, pp. 352–390.

    Article  CAS  Google Scholar 

  56. Cross, J., Jones, G., and Kent, M.A., Nitrogen + Syngas, 2016, vol. 341, pp. 40–48.

  57. Clariant International Official Website. Catalysts for Syngas 2010. http://www.clariant.com/Catalysts. Cited July 20, 2018.

  58. US Patent 7622058, 2009.

  59. WO Patent 2016/047504, 2016.

  60. Pashchenko, D., Energy Convers. Manage., 2019, vol. 185, pp. 465–472.

    Article  CAS  Google Scholar 

  61. Clariant Official Website. Clariant ReforMax LDP Plus: a new generation of reforming catalysts with ultra-low pressure drop. https://www.clariant.com/ru-RU/Corporate/News/2017/03/Clariants-ReforMax-LDP-Plus-a-new-generation-of-reforming-catalysts-with-ultralow-pressure-drop. Cited January 17, 2022.

  62. Librera, C., PTQ, Q2 2020, pp. 43-47. https://cdn.digitalrefining.com/data/page/fck/magazine/113.pdf. Cited January 17, 2022.

  63. US Patent 4861745, 1989.

  64. Ratnasamy, C. and Wagner, J.P., Catal. Rev., 2009, vol. 51, pp. 325–440.

    Article  CAS  Google Scholar 

  65. Aasberg-Petersen, K., Dybkjær, I., Ovesen, C.V., Schjødt, N.C., Sehested, J., and Thomsen, S.G., J. Nat. Gas Sci. Eng., 2011, vol. 3, no. 2, pp. 423–0459.

    Article  CAS  Google Scholar 

  66. Busca, G., in Heterogeneous Catalytic Materials, New York: Elsevier, 2014, pp. 345–374. https://doi.org/10.1016/B978-0-444-59524-9.00010-9

  67. Li, Q., Ma, W., He, R., and Mu, Z., Catal. Today, 2005, vol. 106, pp. 52–56.

    Article  CAS  Google Scholar 

  68. Natesakhawat, S., Wang, X., Zhang, L., and Ozkan U.S., J. Mol. Catal. A Chem., 2006, vol. 260, pp. 82–94.

  69. EP Patent 1149799, 2001.

  70. EP Patent 1445235, 2004.

  71. Clariant Official Website. Clariant introduces ShiftMax® 120 HCF: New HTS catalyst with essentially no hexavalent chromium. https://www.clariant.com/ru-RU/Corporate/News/2014/09/Clariant-introduces-ShiftMax-reg–120-HCF–New-HTS-catalyst-with-essentially-no-hexavalent-chromium. Cited May 13, 2021.

  72. Gines, M.J.L., Amadeo, N., Laborde, M., and Apestegufa, C.R., Appl. Catal., A, 1995, vol. 131, pp. 283–296.

  73. US Patent 4835132, 1987.

  74. WO Patent 2003/082468 A1, 2003.

  75. US Patent 2010/0102278, 2010.

  76. US Patent 2010/0112397, 2010.

  77. US Patent 6693057, 2004.

  78. US Patent 6627572, 2006.

  79. US Patent 4863894, 1989.

  80. US Patent 9492809, 2016.

  81. US 2009/0149324, 2009.

  82. Reddy, G.K. and Smirniotis, P.G., in Water Gas Shift Reaction, New York: Elsevier, 2015, pp. 1–20. https://doi.org/10.1016/B978-0-12-420154-5.00001-2

  83. Tanaka, Y., Utaka, T., Kikuchi, R., Sasaki, K., and Eguchi, K., Appl. Catal., A, 2003, vol. 242, pp. 287–295.

  84. EP Patent 2 599 541, 2011.

  85. WO Patent 2013/079323, 2013.

  86. Wang, X. and Gorte, R.J., Appl. Catal., A, 2003, vol. 247, pp. 157–162.

  87. Panagiotopoulou, P. and Kondarides, D.I., Catal. Today, 2006, vol. 112, pp. 4952.

    Article  CAS  Google Scholar 

  88. Gorte, R.J. and Zhao, S., Catal. Today, 2005, vol. 104, pp. 18–24.

    Article  CAS  Google Scholar 

  89. Choung, S.Y., Ferrandon, M., and Krause, T., Catal. Today, 2005, vol. 99, pp. 257–262.

    Article  CAS  Google Scholar 

  90. Radhakrishnan, R., Willigan, R.R., Dardas, Z., and Vanderspurt, T.H., Appl. Catal., B, 2006, vol. 66, pp. 23–28.

    Article  CAS  Google Scholar 

  91. Pinaeva, L.G., Sadovskaya, E.M., Ivanova, Yu.A., Kuznetsova, T.G., Prosvirin, I.P., Sadykov, V.A., Schuurman, Y., van Veen, A.C., and Mirodatos, C., Chem. Eng. J., 2014, vol. 257, pp. 281–291.

    Article  CAS  Google Scholar 

  92. US Patent 8119099, 2012.

  93. Haldor Topsoe Official Website. Hydrogen/CO Shift. https://www.topsoe.com/ru/processes/hydrogen/co-shift. Cited May 12, 2021.

  94. Dahl, P.J., Speth, C., Jensen, A.E.K., Symreng, M., Hoffmann, M.K., Han, P.A., and Nielsen, S.E., New SynCOR Ammonia™ Process. https://info.topsoe.com/new-syncor-ammonia-process-wp-dlp. Cited April 29, 2021.

  95. http://www.jmcatalysts.cn/en/pdf/HydrogenTechBrochFeb2007.pdf. Cited December 23, 2018.

  96. https://matthey.com/-/media/files/markets/jm-ammonia-market-brochure-c2018.pdf. Cited May 13, 2021.

  97. Xiao, J., Mei, A., Tao, W., Ma, S., Bénard, P., and Chahine, R., Energies, 2021, vol. 14, pp. 2450–2464.

    Article  CAS  Google Scholar 

  98. Grande, C.A., in Hydrogen Science and Engineering: Materials, Processes, Systems and Technology, Stolten, D. and Emonts, B., Eds. Weinheim: Wiley-VCH, 2016, pp. 491–508.

    Google Scholar 

  99. Separation Technology R&D Needs for Hydrogen Production in the Chemical and Petrochemical Industries, 2005. https://elearn.ing.unipi.it/pluginfile.php/157407/ mod_resource/content/1/h2_report.pdf. Cited January 17, 2022.

  100. Chou, C., Chen, F., Huang, Y.J., and Yang, H., Chem. Eng. Trans., 2013, vol. 32, pp. 1855–1860.

    Google Scholar 

  101. Ebner, A.D. and Ritter, J.A., Sep. Sci. Technol., 2009, vol. 44, pp. 1273–1421.

    Article  CAS  Google Scholar 

  102. Hao, G.P., Li, W.C., and Lu, A.H., J. Mater. Chem., 2011, vol. 21, pp. 6447–6451.

    Article  CAS  Google Scholar 

  103. Di Biase, E. and Sarkisov, L., Carbon, 2015, vol. 94, pp. 27–40.

    Article  CAS  Google Scholar 

  104. Azpiri Solares, R.A., dos Santos, D.S., Ingram, A., and Wood, J., Fuel, 2019, vol. 253, pp. 1130–1139.

    Article  CAS  Google Scholar 

  105. Lopes, F.V.S., Grande, C.A., Ribeiro, A.M., Oliveira, E.L.G., Loureiro, J.M., and Rodrigues, A.E., Ind. Eng. Chem. Res., 2009, vol. 48, no. 8, pp. 3978–3990.

    Article  CAS  Google Scholar 

  106. Regufe, M.J., Tamajon, J., Ribeiro, A.M., Ferreira, A., Lee, U.H., Hwang, Y.K., Chang, J.S., Serre, C., Loureiro, J.M., and Rodrigues, A.E., Energy Fuels, 2015, vol. 29, no. 7, pp. 4654–4664.

    Article  CAS  Google Scholar 

  107. Agueda, V.I., Delgado, J.A., Uguina, M.A., Brea, P., Spjelkavik, A.I., Blom, R., and Grande, C., Chem. Eng. Sci., 2015, vol. 124, pp. 159–169.

    Article  CAS  Google Scholar 

  108. Huang, A., Chen, Y., Wang, N., Hu, Z., Jiang, J., and Caro, J., Chem. Commun., 2012, vol. 48, no. 89, pp. 10981–10983.

    Article  CAS  Google Scholar 

  109. Zhao, L., Primabudi, E., and Stolten, D., Energy Procedia, 2014, vol. 63, pp. 1756–1772.

    Article  CAS  Google Scholar 

  110. Krishna, R. and Long, J.R., J. Phys. Chem. C, 2011, vol. 115, no. 26, pp. 12941–12950.

    Article  CAS  Google Scholar 

  111. Masala, A., Vitillo, J.G., Mondino, G., Grande, C.A., Blom, R., Manzolic, M., Marshall, M., and Bordiga, S., ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 1, pp. 455–463.

    Article  CAS  PubMed  Google Scholar 

  112. Britt, D., Furukawa, H., Wang, B., Glover, T.G., and Yaghi, O.M., Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 49, pp. 20637–20640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xiang, S., He, Y., Zhang, Z., Wu, H., Zhou, W., Krishna, R., and Chen, B., Nat. Commun., 2012, vol. 3, p. 954.

    Article  PubMed  CAS  Google Scholar 

  114. Grande, C.A., Águeda, V.I., Spjelkavik, A., and Blom, R., Chem. Eng. Sci., 2015, vol. 124, pp. 154–158.

    Article  CAS  Google Scholar 

  115. Grande, C.A., Blom, R., Andreassen, K.A., and Stensrød, R.E., Energy Procedia, 2017, vol. 114, pp. 2265–2270.

    Article  CAS  Google Scholar 

  116. Al-Naddaf, Q., Thakkar, H., and Rezaei, F., ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 35, pp. 29656–29666.

    Article  CAS  PubMed  Google Scholar 

  117. US Patent 8815208, 2014.

  118. US Patent 9604200, 2017.

  119. Ammonia Plant Performance. https://matthey.com/-/media/files/markets/jm-ammonia-market-brochure-c2018.pdf. Cited May 6, 2021.

  120. Haldor Topsoe Official Website. RKA-10: Oxygen-Fired Secondary and Autothermal Reforming Catalyst. https://www.topsoe.com/products/catalysts/rka-10?hsLang=en. Cited May 21, 2021.

  121. Hou, Z., Chen, P., Fang, H., Zheng, X., and Yashima, T., Int. J. Hydrogen Energy, 2006, vol. 31, pp. 555–561.

    Article  CAS  Google Scholar 

  122. Yentekakis, I.V., Panagiotopoulou, P., and Artemakis, G., Appl. Catal., B, 2021, vol. 296. https://doi.org/10.1016/j.apcatb.2021.120210

  123. Liu, W., Li, L., Lin, S., Luo, Y., Bao, Z., Mao, Y., Li, K., Wu, D., and Peng, H., J. Energy Chem., 2022, vol. 65, pp. 34–47.

    Article  Google Scholar 

  124. Liu, C., Ye, J., Jiang, J., and Pan, Y., ChemCatChem, 2011, vol. 3, pp. 529–541.

    Article  CAS  Google Scholar 

  125. Nair, M.M. and Kaliaguine, S., New J. Chem., 2016, vol. 40, pp. 4049–4060.

    Article  CAS  Google Scholar 

  126. Xu, L., Miao, Z., Song, H., Chen, W., and Chou, L., Catal. Sci. Technol., 2014, vol. 4, pp. 1759–1770.

    Article  CAS  Google Scholar 

  127. Li, S. and Gong, J., Chem. Soc. Rev., 2014, vol. 43, pp. 7245–7256.

    Article  CAS  PubMed  Google Scholar 

  128. Batiot-Dupeyrat, C., Gallego, G.A.S., Mondragon, F., Barrault, J., and Tatibouët, J.-M., Catal. Today, 2005, vol. 107, pp. 474–480.

    Article  CAS  Google Scholar 

  129. De Sousa, F.F., de Sousa, H.S., Oliveira, A.C., Junior, M.C., Ayala, A.P., Barros, E.B., Viana, B.C., Josue Filho, M., and Oliveira, A.C., Int. J. Hydrogen Energy, 2012, vol. 37, pp. 3201–3212.

    Article  CAS  Google Scholar 

  130. Le Saché, E., Pastor-Pérez, L., Watson, D., Sepúlveda-Escribano, A., and Reina, T., Appl. Catal., B, vol. 236, pp. 458–465.

  131. Zubenko, D., Singh, S., and Rosen, B.A., Appl. Catal., B, 2017, vol. 209, pp. 711–719.

    Article  CAS  Google Scholar 

  132. Bhattar, S., Abedin, Md. A., Kanitkar, S., and Spi-vey, J.J., Catal. Today, 2021, vol. 365, pp. 2–23.

    Article  CAS  Google Scholar 

  133. Gao, Y., Chen, D., Saccoccio, M., Lu, Z., and Ciucci, F., Nano Energy, 2016, vol. 27, pp. 499–508.

    Article  CAS  Google Scholar 

  134. Neagu, D., Oh, T.-S., Miller, D.N., Ménard, H., Bukhari, S.M., Gamble, S.R., Gorte, R.J., Vohs, J.M., and Irvine, J.T.S., Nat. Commun., 2015, vol. 6, p. 8120.

    Article  PubMed  Google Scholar 

  135. Sun, Y., Li, J., Zeng, Y., Amirkhiz, B.S., Wang, M., Behnamian, Y., and Luo, J., J. Mater. Chem. A, 2015, vol. 3, pp. 11048–11056.

    Article  CAS  Google Scholar 

  136. Tsekouras, G., Neagu, D., and Irvine, J.T.S., Energy Environ. Sci., 2013, vol. 6, pp. 256–266.

    Article  CAS  Google Scholar 

  137. Arbag, H., Yasyerli, S., Yasyerli, N., and Dogu, G., Int. J. Hydrogen Energy, 2010, vol. 35, pp. 2296–2304.

    Article  CAS  Google Scholar 

  138. Damyanova, S., Pawelec, B., Arishtirova, K., Fierro, J., Sener, C., and Dogu, T., Appl. Catal., B, 2009, vol. 92, pp. 250–261.

    Article  CAS  Google Scholar 

  139. Guo, J., Lou, H., Zhao, H., Chai, D., and Zheng, X., Appl. Catal., A, 2004, vol. 273, pp. 75–82.

  140. Guo, J., Lou, H., and Zheng. X., Carbon, 2007, vol. 45, pp. 1314–1321.

    Article  CAS  Google Scholar 

  141. Koo, K.Y., Roh, H.S., Seo, Y.T., Seo, D.J., Yoon, W.L., and Park, S.B., Appl Catal., A, 2008, vol. 340, pp. 183–190.

  142. Cho, E., Lee, Y.H., Kim, H., Jang, E.J., Kwak, J.H., Lee, K., Ko, C.H., and Yoon, W.L., Appl. Catal., A, 2020, vol. 602. https://doi.org/10.1016/j.apcata.2020.117694

  143. Fernandez, C., Miranda, N., García, X., Eloy, P., Ruiz, P., Gordon, A., and Jimenez, R., Appl. Catal., B, 2014, vol. 156, pp. 202–212.

    Article  CAS  Google Scholar 

  144. Alirezaei, I., Hafizi, A., and Rahimpour, M., J. CO2 Util., 2018, vol. 23, pp. 105–116.

  145. Nagaoka, K., Seshan, K., Aika, K.-I., and Lercher, J.A., J. Catal., 2001, vol. 197, pp. 34–42.

    Article  CAS  Google Scholar 

  146. Dębek, R., Galvez, M.E., Launay, F., Motak, M., Grzybek, T., and Da Costa, P., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 11616–11623.

    Article  CAS  Google Scholar 

  147. Ozkara-Aydınoglu, S. and Aksoylu, A.E., Catal. Commun., 2010, vol. 11, pp. 1165–1170.

    Article  CAS  Google Scholar 

  148. Laosiripojana, N., Chadwick, D., and Assabumrungrat, S., Chem. Eng. J., 2008, vol. 138, pp. 264–273.

    Article  CAS  Google Scholar 

  149. Xu, B.Q., Wei, J.M., Yu, Y.T., Li, Y., Li, J.L., and Zhu, Q.M., J. Phys. Chem. B, 2003, vol. 107, pp. 5203–5207.

    Article  CAS  Google Scholar 

  150. Morales Anzures, F., Salinas Hernández, P., Mondragón Galicia, G., Gutiérrez Martínez, A., Tzompantzi Morales, F., Romero Romo, M.A., and Pérez Hernández, R. Int. J Hydrogen Energy, 2021, vol. 46, no. 51, pp. 26224–26233. https://doi.org/10.1016/j.ijhydene.2021.05.073

    Article  CAS  Google Scholar 

  151. Lou, Y., Steib, M., Zhang, Q., Tiefenbacher, K., Horvath, A., Jentys, A., Liu, Y., and Lercher, J.A., J. Catal., 2017, vol. 356, pp. 147–156.

    Article  CAS  Google Scholar 

  152. Swirk, K., Rønning, M., Motak, M., Grzybek, T., and Da Costa, P., Int. J. Hydrogen Energy, 2021, vol. 46, pp. 12128–12144.

    Article  CAS  Google Scholar 

  153. Pompeo, F., Nichio, N.N., Ferretti, O.A., and Resasco, D., Int. J. Hydrogen Energy, 2005, vol. 30, pp. 1399–1405.

    Article  CAS  Google Scholar 

  154. Wang, Y., Zhao, Q., Li, L., Hu, C., and Da Costa, P., Appl. Catal., A, 2021, vol. 617. https://doi.org/10.1016/j.apcata.2021.118120

  155. Wang, N., Chu, W., Zhang, T., and Zhao, X.S., Chem. Eng. J., 2011, vol. 170, pp. 457–463.

    Article  CAS  Google Scholar 

  156. Lu, Y., Zhu, J., Peng, X., Tong, D., and Hu, C., Int. J. Hydrogen Energy, 2013, vol. 38, pp. 7268–7279.

    Article  CAS  Google Scholar 

  157. Seok, S.H., Choi, S.H., Park, E.D., Han, S.H., and Lee, J.S., J. Catal., 2002, vol. 209, pp. 6–15.

    Article  CAS  Google Scholar 

  158. Luna, A.E.C. and Iriarte, M.E., Appl. Catal., A, 2008, vol. 343, pp. 10–15.

  159. Liu, H., Hadjltaief, H.B., Benzina, M., Galvez, M.E., and Da Costa, P., Int. J. Hydrogen Energy, 2019, vol. 44, pp. 246–255.

    Article  CAS  Google Scholar 

  160. Wang, J.B., Tai, Y.L., Dow, W.P., and Huang, T.J., Appl. Catal., A, 2001, vol. 218, pp. 69–79.

  161. Yan, X., Hu, T., Liu, P., Li, S., Zhao, B., Zhang, Q., Jiao, W., Chen, S., Wang, P., Lu, J., Fan, L., Deng, X., and Pan, Y.X., Appl. Catal., B, 2019, vol. 246, pp. 221–231.

    Article  CAS  Google Scholar 

  162. Alvarez-Galvan, M.C., Navarro, R.M., Rosa, F., Briceno, Y., Gordillo Alvarez, F., and Fierro, J.L.G., Int. J. Hydrogen Energy, 2008, vol. 33, pp. 652–663.

    Article  CAS  Google Scholar 

  163. Gonzalez-Delacruz, V.M., Ternero, F., Pereñíguez, R., Caballero, A., and Holgado, J.P., Appl. Catal., A, 2010, vol. 384, pp. 1–9.

  164. Liu, Z., Grinter, D.C., Lustemberg, P.G., Nguyen-Phan, T.D., Zhou, Y., Luo, S., Waluyo, I., Crumlin, E.J., Stacchiola, D.J., Zhou, J., Carrasco, J., Busnengo, H.F., Ganduglia-Pirovano, M.V., Senanayake, S.D., and Rodriguez, J.A., Angew. Chem., Int. Ed., 2016, vol. 55, pp. 7455–7459.

    Article  CAS  Google Scholar 

  165. Yu, M., Zhu, Y.A., Lu, Y., Tong, G., Zhu, K., and Zhou, X., Appl. Catal., B, 2015, vol. 165, pp. 43–56.

    Article  CAS  Google Scholar 

  166. Charisiou, N., Siakavelas, G., Tzounis, L., Sebastian, V., Monzon, A., Baker, M., Hinder, S., Polychronopoulou, K., Yentekakis, I., and Goula, M., Int. J. Hydrogen Energy, 2018, vol. 43, pp. 18955–18976.

    Article  CAS  Google Scholar 

  167. Kambolis, A., Matralis, H., Trovarelli, A., and Papadopoulou, C., Appl. Catal., A, 2010, vol. 377, pp. 16–26.

  168. Ocsachoque, M., Pompeo, F., and Gonzalez, G., Catal. Today, 2011, vol. 172, pp. 226–231.

    Article  CAS  Google Scholar 

  169. Guo, D., Lu, Y., Ruan, Y., Zhao, Y., Zhao, Y., Wang, S., and Ma, X., Appl. Catal., B, 2020, vol. 277, // Appl. Catal. B Environ. 2020. V. 277. https://doi.org/10.1016/j.apcatb.2020.119278

  170. Horváth, A., Németh, M., Beck, A., Maróti, B., Sáfrán, G., Pantaleo, G., Liotta, L.F., Venezia, A.M., and La Parola, V., Appl. Catal., A, 2021, vol. 621. https://doi.org/10.1016/j.apcata.2021.118174

  171. Han, K., Yu, W., Xu, L., Deng, Z., Yu, H., and Wang, F., Fuel, 2021, vol. 291. https://doi.org/10.1016/j.fuel.2021.120182

  172. Marinho, A.L.A., Toniolo, F.S., Noronha, F.B., Epron, F., Duprez, D., and Bion, N., Appl. Catal., B, 2021, vol. 281. https://doi.org/10.1016/j.apcatb.2020.119459

  173. Teh, L.P., Setiabudi, H.D., Timmiati, S.N., Aziz, M.A.A., Annuar, N.H.R., and Ruslan, N.N., Chem. Eng. Sci., 2021, vol. 242. https://doi.org/10.1016/j.ces.2021.116606

  174. TechnipFMC Parallel Reformer (TPR®). https:// www.technipfmc.com/media/2qkb4se5/tpr-parallel-reformer_210x270_final_web.pdf. Cited April 28, 2021.

  175. Sandberg, P., Optimal Performance—Integration of Haldor Topsoe Heat Exchange Reformer in Ammonia Plants. https://info.topsoe.com/hter-whitepaper, Cited November 10, 2020.

  176. Thyssenkrupp Official Website. https://www.thyssenkrupp-industrial-solutions.com/. Cited November 10, 2020.

  177. Thyssenkrupp Official Website. Ammonia Technology. https://ucpcdn.thyssenkrupp.com/_legacy UCPthyssenkruppBAIS/assets.files/products___services/fertilizer_plants/ammonium_sulphate_plants/brochure-ammonia_scr.pdf. Cited November 3, 2020.

  178. KBR Official Website. https://www.kbr.com/en/solutions/technologies/process-technologies/ammonia-fertilizers-technologies. Cited November 1, 2020.

  179. Methanol: The Basic Chemical and Energy Feedstock of the Future, Bertau, M., Offermanns, H., Plass, L., Schmidt, F., and Wernicke, H.-J., Eds., Berlin, Heidelberg: Springer, 2014.

  180. Dahl, P.J., Christensen, T.S., Winter-Madsen, S., and King, S.M., Proc. Nitrogen + Syngas Int. Conf. Exhib., 2014, pp. pp. 1–12.

  181. Methanol and Derivatives. Proven technologies for Optimal Production. 2016. https://www.engineering-airliquide.com/sites/activity_eandc/files/2016/07/13/ methanol_and_derivatives_brochure-june_2016.pdf. Cited November 21, 2020.

  182. Aasberg-Petersen, K., Hansen, J.H.B., Christensen, T.S., Dybkjaer, I., Christensen, P.S., Nielsen, C.S., Madsen, S.E.L.W., and Rostrup-Nielsen, J.R., Appl. Catal., A, 2001, vol. 221, pp. 379–387.

  183. Golosman, E.Z., Dul’nev, A.V., Efremov, V.N., Kruglova, M.A., Lunin, V.V., Obysov, M.A., Polivanov, B.I., Tkachenko, I.S., and Tkachenko, S.N., Katal. Prom-sti, 2017, no. 6, pp. 487–509.

  184. Ovsienko, O.L., Nikul’shin, P.A., Karavanov, A.N., and Yushkin, V.A., Katal. Prom-sti, 2019, no. 2, pp. 142–148.

  185. Rosneft Official Website. https://www.rosneft.ru/ press/news/item/197399/. Cited June 23, 2021.

  186. RF Patent 2677650, 2017.

Download references

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation under the government contract at the Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. AAAA-A21-121011390010-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Pinaeva.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinaeva, L.G., Noskov, A.S. Modern Level of Catalysts and Technologies for the Conversion of Natural Gas into Syngas. Catal. Ind. 14, 66–85 (2022). https://doi.org/10.1134/S2070050422010081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050422010081

Keywords:

Navigation