Skip to main content
Log in

Nickel- and Molybdenum-Containing Catalysts for Direct Synthesis of Propylene from Ethylene: Effect of the Support

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Polyfunctional Ni- and Mo-containing catalysts are prepared by sequentially impregnating a support (SiO2, Al2O3, B2O3–Al2O3, \({\text{SO}}_{4}^{{2 - }}\)/Al2O3, \({\text{SO}}_{4}^{{2 - }}\)/ZrO2) using solutions of corresponding salts with intermediate steps of drying at 120°C and calcination at 500–550°C. X-ray powder diffraction, temperature programmed reduction, UV-VIS diffuse reflectance spectroscopy, and electron spin resonance spectroscopy are used to study physicochemical properties of the prepared catalysts. The catalysts are tested in the direct synthesis of propylene from ethylene at an atmospheric pressure, 200°C and an ethylene weight hourly space velocity of 0.5 h−1. The highest conversion of ethylene and yield of propylene are achieved for a sample based on borated alumina, due to the formation of active sites of ethylene dimerization, Ni2+ ions bound to acid sites of the support, and active sites of metathesis (surface monomolybdate compounds).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Nexant Official Website. www.nexant.com/resources/ purpose-what-s-driving-new-propane-dehydrogenation-projects-north-america. Cited October 13, 2021.

  2. Mol, J.C., J. Mol. Catal. A: Chem., 2004, vol. 213, pp. 39–45. https://doi.org/10.1016/j.molcata.2003.10.049

    Article  CAS  Google Scholar 

  3. US Patent 8395005, 2013.

  4. RF Patent 2383522, 2010.

  5. Andrei, R.D., Popa, M.I., Fajula, F., Cammarano, C., Khudhair, A.Al., Bouchmella, K., Mutin, P.H., and Hulea, V., ACS Catal., 2015, vol. 5, pp. 2774—2777. https://doi.org/10.1021/acscatal.5b00383

    Article  CAS  Google Scholar 

  6. Beucher, R., Andrei, R.D., Cammarano, C., Galarneau, A., Fajula, F., and Hulea, V., ACS Catal., 2018, vol. 8, pp. 3636–3640. https://doi.org/10.1021/acscatal.8b00663

    Article  CAS  Google Scholar 

  7. Li, L., Palcheva, R.D., and Jens, K.J., Top. Catal., 2013, vol. 56, pp. 783–788. https://doi.org/10.1007/s11244-013-0036-z

    Article  CAS  Google Scholar 

  8. Hulea, V., Catal. Sci. Technol., 2019, vol. 9, pp. 4466–4477. https://doi.org/10.1039/C9CY00870E

    Article  CAS  Google Scholar 

  9. RF Patent 2370314, 2009.

  10. Buluchevskii, E.A., Karpova, T.R., Saifulina, L.F., and Lavrenov, A.V., Ross. Khim. Zh., 2018, vol. 62, nos. 1–2, pp. 110–116. https://doi.org/10.6060/rcj.2018621-2.8

  11. US Patent 3689589, 1972.

  12. Tanaka, K and Tanaka, K.-I., J. Chem. Soc., Faraday Trans. 1, 1987, vol. 83, pp. 1859–1868. https://doi.org/10.1039/f19878301859

    Article  CAS  Google Scholar 

  13. US Patent 3728415, 1973.

  14. Karpova, T.R., Lavrenov, A.V., Buluchevskii, E.A., Gulyaeva, T.I., Buyal’skaya, K.S., Shilova, A.V., Leont’eva, N.N., Arbuzov, A.B., and Drozdov, V.A., Catal. Ind., 2014, vol. 6, no. 2, pp. 105–113.

    Article  Google Scholar 

  15. Ghashghaee, M., Rev. Chem. Eng., 2018, vol. 34, pp. 595–655. https://doi.org/10.1515/revce-2017-0003

    Article  CAS  Google Scholar 

  16. Martínez, A., Arribas, M.A., Concepción, P., and Moussa, S., Appl. Catal., A, 2013, vol. 467, pp. 509–518. https://doi.org/10.1016/j.apcata.2013.08.021

  17. Stoyanova, M., Bentrup, U., Atia, H., Kondratenko, E.V., Linke, D., and Rodemerck, U., Catal. Sci. Technol., 2019, vol. 9, pp. 3137–3148. https://doi.org/10.1039/C9CY00696F

    Article  CAS  Google Scholar 

  18. Sayfulina, L.F., Buluchevskiy, E.A., Lavrenov, A.V., Gulyaeva, T.I., Trenikhin, M.D., Protasova, O.V., Gerasimov, E.Y., Gulyaev, R.V., and Drozdov, V.A., Adv. Mater. Res., 2015, vol. 1085, pp. 17–22. https://doi.org/10.4028/www.scientific.net/AMR.1085.17

    Article  Google Scholar 

  19. Hahn, T., Bentrup, U., Armbruster, M., Kondratenko, E.V., and Linke, D., ChemCatChem, 2014, vol. 6, pp. 1664–1672. https://doi.org/10.1002/cctc.201400040

    Article  CAS  Google Scholar 

  20. Debecker, D.P., Hauwaert, D., Stoyanova, M., Barkschat, A., Rodemerck, U., Gaigneaux, E.M., Appl. Catal., A, 2011, vol. 391, pp. 78–85. https://doi.org/10.1016/j.apcata.2010.06.021

  21. Ibrahim, M.A., Akhtar, M.N., Cejka, J., Montanari, E., Balcar, H., Kubu, M., and Al-Khattaf, S.S., J. Ind. Eng. Chem., 2017, vol. 53, pp. 119–126. https://doi.org/10.1016/j.jiec.2017.04.012

    Article  CAS  Google Scholar 

  22. Lavrenov, A.V., Buluchevskiy, E.A., Karpova, T.R., Moiseenko, M.A., Mikhailova, M.S., Chumachenko, Yu.A., Skorplyuk, A.A., Gulyaeva, T.I., Arbuzov, A.B., Leontieva, N.N., and Drozdov, V.A., Chem. Sustainable Dev., 2011, no. 1, pp. 81–89.

  23. Buluchevskiy, E.A., Mikhailova, M.S., and Lavrenov, A.V., Chem. Sustainable Dev., 2013, no. 1, pp. 47–51.

  24. Saifulina, L.F., Buluchevskii, E.A., and Lavrenov, A.V., Zh. Sib. Fed. Univ., Khim., 2014, vol. 7, no. 4, pp. 526–535.

    Google Scholar 

  25. Lavrenov, A.V., Saifulina, L.F., Buluchevskii, E.A., and Bogdanets, E.N., Catal. Ind., 2015, vol. 7, no. 3, pp. 175–187.

    Article  Google Scholar 

  26. Grunert, W., Stakheev, A.Yu., Morke, W., Feldhaus, R., Anders, K., Shpiro, E.S., and Minachev, K.M., J. Catal., 1992, vol. 135, pp. 269–286. https://doi.org/10.1016/0021-9517(92)90286-Q

    Article  Google Scholar 

  27. Zhang, B., Liu, N., Lin, Q., and Jin, D., J. Mol. Catal., 1991, vol. 65, pp. 15–28. https://doi.org/10.1016/0304-5102(91)85078-G

    Article  CAS  Google Scholar 

  28. Song, X. and Sayari, A., Catal. Rev.: Sci. Eng., 1996, vol. 38, no. 3, pp. 329–412. https://doi.org/10.1080/01614949608006462

    Article  CAS  Google Scholar 

  29. Sohn, J.R., Park, W.C., and Kim, H.W., J. Catal., 2002, vol. 209, pp. 69–74. https://doi.org/10.1006/jcat.2002.3581

    Article  CAS  Google Scholar 

  30. Bergwerff, J.A., Visser, T., Leliveld, B.R.G., Rossenaar, B.D., de Jong, K.P., and Weckhuysen, B.M., J. Am. Chem. Soc., 2004, vol. 126, pp. 14548–14556. https://doi.org/10.1021/ja040107c

    Article  CAS  PubMed  Google Scholar 

  31. Nikolova, D., Edreva-Kardjieva, R., Giurginca, M., Meghea, A., Vakros, J., Voyiatzis, G.A., and Kordulis, C., Vib. Spectrosc., 2007, vol. 44, no. 2, pp. 343–350. https://doi.org/10.1016/j.vibspec.2007.03.002

    Article  CAS  Google Scholar 

  32. Morales-Ortuño, J.C. and Klimova, T.E., Fuel, 2017, vol. 198, pp. 99–109. https://doi.org/10.1016/j.fuel.2017.01.007

    Article  CAS  Google Scholar 

  33. Lavrenov, A.V., Buluchevskiy, E.A., Moiseenko, M.A., Drozdov, V.A., Arbuzov, A.B., Gulyaeva, T.I., Likholobov, V.A., and Duplyakin, V.K., Kinet. Catal., 2010, vol. 51, no. 3, pp. 404–409.

    Article  CAS  Google Scholar 

  34. Budukva, S.V., Klimov, O.V., Chesalov, Y.A., Prosvirin, I.P., Larina, T.V., and Noskov, A.S., Catal. Lett., 2018, vol. 148, pp. 1525–1534. https://doi.org/10.1007/s10562-018-2365-9

    Article  CAS  Google Scholar 

  35. Tian, H., Roberts, C.A., and Wachs, I.E., J. Phys. Chem. C, 2010, vol. 114, no. 33, pp. 14110–14120. https://doi.org/10.1021/jp103269w

    Article  CAS  Google Scholar 

  36. Wu, H.-C., Chen, T.-C., Wu, J.-H., Pao, C.-W., and Chen, C.-S., J. Colloid Interface Sci., 2021, vol. 586, pp. 514–527. https://doi.org/10.1016/j.jcis.2020.10.117

    Article  CAS  PubMed  Google Scholar 

  37. Miao, Y., Lu, G., Liu, X., Guo, Y., Wang, Y., and Guo, Y., J. Mol. Catal. A: Chem., 2009, vol. 306, pp. 17–22. https://doi.org/10.1016/j.molcata.2009.02.017

    Article  CAS  Google Scholar 

  38. Ferdous, D., Dalai, A.K., and Adjaye, J., Appl. Catal., A, 2004, vol. 260, pp. 137–151. https://doi.org/10.1016/j.apcata.2003.10.010

  39. Rajagopal, S., Marini, H.J., Marzari, J.A., and Miranda, R., J. Catal., 1994, vol. 147, no. 2, pp. 417–428. https://doi.org/10.1006/jcat.1994.1159

    Article  CAS  Google Scholar 

  40. Domínguez-Crespo, M.A., Arce-Estrada, E.M., Torres-Huerta, A.M., Díaz-García, L., Cortez de la Paz, M.T., Mater. Charact., 2007, vol. 58, pp. 864–873. https://doi.org/10.1016/j.matchar.2006.08.013

    Article  CAS  Google Scholar 

  41. Lwin, S. and Wachs, I.E., ACS Catal., 2014, vol. 4, no. 8, pp. 2505–2520. https://doi.org/10.1021/cs500528h

    Article  CAS  Google Scholar 

  42. Debecker, D.P., Stoyanova, M., Rodemerck, U., and Gaigneaux, E.M., J. Mol. Catal. A: Chem., 2011, vol. 340, nos. 1–2, pp. 65–76. https://doi.org/10.1016/j.molcata.2011.03.011

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis, project AAAA-A21-121011890074-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Karpova.

Additional information

Translated by K. Utegenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpova, T.R., Buluchevskii, E.A., Lavrenov, A.V. et al. Nickel- and Molybdenum-Containing Catalysts for Direct Synthesis of Propylene from Ethylene: Effect of the Support. Catal. Ind. 13, 352–360 (2021). https://doi.org/10.1134/S207005042104005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207005042104005X

Keywords:

Navigation