Skip to main content
Log in

Influence of Aluminum Sources on Synthesis of SAPO-34 and NH3-SCR of NOx by as-Prepared Cu/SAPO-34 Catalysts

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The synthesis of the microporous SAPO-34 molecular sieve goes from a combination of three templates: triethylamine, tetraethylammonium hydroxide, and morpholine under hydrothermal conditions. Two aluminum sources, namely aluminum hydroxide, and aluminum isopropoxide, were used exclusively to synthesize SAPO-34 zeolites. The effects of aluminum sources on the crystallization and physicochemical properties of SAPO-34 were studied thoroughly. The synthesized samples were characterized by using different characterization methods, including XRD, FE-SEM, N2 isotherm, EDS, and NH3-TPD. The results illustrate that the various sources of aluminum used for the synthesis of SAPO-34 materials extremely affect the crystallinity, morphology, and density of acid sites. Besides, the influence of aluminum sources on the performance of NH3-SCR technology was studied with Cu/SAPO-34 catalysts in a fixed-bed flow reactor. The two Cu/SAPO-34 catalysts promoted different NO and NH3 conversions between 200–600°C though they share similar Cu content, which was loaded by the ion-exchange method in aqueous solution. In addition, the different Cu species in the two catalyst samples are surveyed by H2-TPR, while the EPR method is also used to assess the coordination of the copper element in the two catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P., Asner, G.P., Cleveland, C.C., Green, P.A., Holland, E.A., Karl, D.M., Michaels, A.F., Porter, J.H., Townsend, A.R., and Vörösmarty, C.J., Biogeochemistry, 2004, vol. 70, no. 2, pp. 153–226.

    Article  CAS  Google Scholar 

  2. Busca, G., Lietti, L., Ramis, G., and Berti, F., Appl. Catal., B, 1998, vol. 18, nos. 1–2, pp. 1–36.

  3. Deka, U., Lezcano-Gonzalez, I., Weckhuysen, B.M., and Beale, A.M., ACS Catal., 2013, vol. 3, no. 3, pp. 413–427.

    Article  CAS  Google Scholar 

  4. Wang, D., Zhang, L., Kamasamudram, K., and Epling, W.S., ACS Catal., 2013, vol. 3, no. 5, pp. 871–881.

    Article  CAS  Google Scholar 

  5. Fickel, D.W., D’Addio, E., Lauterbach, J.A., and Lobo, R.F., Appl. Catal., B, 2011, vol. 102, nos. 3–4, pp. 441–448.

  6. Jeanvoine, Y., Ángyán, J.G., Kresse, G., and Hafner, J., J. Phys. Chem. B, 1998, vol. 102, no. 29, pp. 5573–5580.

    Article  CAS  Google Scholar 

  7. Kwak, J.H., Tonkyn, R.G., Kim, D.H., Szanyi, J., and Peden, C.H.F., J. Catal., 2010, vol. 275, no. 2, pp. 187–190.

    Article  CAS  Google Scholar 

  8. Kwak, J.H., Tran, D., Burton, S.D., Szanyi, J., Lee, J.H., and Peden, C.H.F., J. Catal., 2012, vol. 287, pp. 203–209.

    Article  CAS  Google Scholar 

  9. Hu, H., Cao, F., Ying, W., Sun, Q., and Fang, D., Chem. Eng. J., 2010, vol. 160, no. 2, pp. 770–778.

    Article  CAS  Google Scholar 

  10. Dai, W., Wu, G., Li, L., Guan, N., and Hunger, M., ACS Catal., 2013, vol. 3, no. 4, pp. 588–596.

    Article  CAS  Google Scholar 

  11. Sun, Q., Xie, Z., and Yu, J., Natl. Sci. Rev., 2018, vol. 5, no. 4, pp. 542–558.

    Article  CAS  Google Scholar 

  12. Lee, Y.-J., Baek, S.-C., and Jun, K.-W., Appl. Catal., A, 2007, vol. 329, pp. 130–136.

  13. Chae, H.-J., Park, I.-J., Song, Y.-H., Jeong, K.-E., Kim, C.-U., Shin, C.-H., and Jeong, S.-Y., J. Nanosci. Nanotechnol., 2010, vol. 10, no. 1, pp. 195–202.

    Article  CAS  Google Scholar 

  14. Doan, T., Nguyen, K., Dam, P., Vuong, T.H., Le, M.T., and Thanh, H.P., J. Chem., 2019, article ID 6197527. https://doi.org/10.1155/2019/6197527

  15. Martins, G.A.V., Berlier, G., Coluccia, S., Pastore, H.O., Superti, G.B., Gatti, G., and Marchese, L., J. Phys. Chem. C, 2007, vol. 111, no. 1, pp. 330–339.

    Article  CAS  Google Scholar 

  16. Wang, J., Yu, T., Wang, X., Qi, G., Xue, J., Shen, M., and Li, W., Appl. Catal., B, 2012, vol. 127, pp. 137–147.

    Article  CAS  Google Scholar 

  17. Doan, T., Nguyen, K., Dam, P., Pham, N., Vu, Q., Vuong, T.H., Pham, T.H., and Le, M.T., Chem. Eng. Technol., 2020, vol. 43, no. 4, pp. 731–741.

    Article  CAS  Google Scholar 

  18. Treacy, M.M.J. and Higgins, J.B., Collection of Simulated XRD Powder Diffraction Patterns for Zeolites, Amsterdam: Elsevier, 2007.

    Google Scholar 

  19. Emrani, P., Fatemi, S., and Ashraf Talesh, S., Iran. J. Chem. Chem. Eng., 2011, vol. 30, no. 4, pp. 29–36.

    CAS  Google Scholar 

  20. Sastre, G., Lewis, D.W., and Catlow, C.R.A., J. Phys. Chem. B, 1997, vol. 101, no. 27, pp. 5249–5262.

    Article  CAS  Google Scholar 

  21. Parlitz, B., Schreier, E., Zubowa, H.L., Eckelt, R., Lieske, E., Lischke, G., and Fricke, R., J. Catal., 1995, vol. 155, no. 1, pp. 1–11.

    Article  CAS  Google Scholar 

  22. Flanigen, E.M., Patton, R.L., and Wilson, S.T., Stud. Surf. Sci. Catal., 1988, vol. 37, pp. 13–27.

    Article  CAS  Google Scholar 

  23. Wang, L., Li, W., Qi, G., and Weng, D., J. Catal., 2012, vol. 289, pp. 21–29.

    Article  CAS  Google Scholar 

  24. Huang, M., Auroux, A., and Kaliaguine, S., Microporous Mater., 1995, vol. 5, nos. 1–2, pp. 17–27.

  25. Lok, B.M., Messina, C.A., Patton, R.L., Gajek, R.T., Cannan, T.R., and Flanigen, E.M., J. Am. Chem. Soc., 1984, vol. 106, no. 20, pp. 6092–6093.

    Article  CAS  Google Scholar 

  26. Parlitz, B., Lohse, U., and Schreier, E., Microporous Mater., 1994, vol. 2, no. 3, pp. 223–228.

    Article  CAS  Google Scholar 

  27. Chen, L., Janssens, T.V.W., Skoglundh, M., and Grönbeck, H., Top. Catal., 2019, vol. 62, nos. 1–4, pp. 93–99.

  28. Niwa, M., Katada, N., Sawa, M., and Murakami, Y., J. Phys. Chem., 1995, vol. 99, no. 21, pp. 8812–8816.

    Article  CAS  Google Scholar 

  29. Ma, L., Cheng, Y., Cavataio, G., McCabe, R.W., Fu, L., and Li, J., Appl. Catal., B, 2014, vols. 156–157, pp. 428–437.

  30. Ma, J., Si, Z., Wu, X., Weng, D., and Ma, Y., J. Environ. Sci. (Beijing, China), 2016, vol. 41, pp. 244–251.

    Article  CAS  Google Scholar 

  31. Xue, J.J., Wang, X.Q., Qi, G.S., Wang, J., Shen, M.Q., and Li, W., J. Catal., 2013, vol. 297, pp. 56–64.

    Article  CAS  Google Scholar 

  32. Gao, F., Walter, E.D., Karp, E.M., Luo, J., Tonkyn, R.G., Kwak, J.H., Szanyi, J., and Peden, C.H.F., J. Catal., 2013, vol. 300, pp. 20–29.

    Article  CAS  Google Scholar 

  33. Fahami, A.R., Günter, T., Doronkin, D.E., Casapu, M., Zengel, D., Vuong, T.H., Simon, M., Breher, F., Kucherov, A.V., Brückner, A., and Grunwaldt, J.-D., React. Chem. Eng., 2019, vol. 4, no. 6, pp. 1000–1018.

    Article  CAS  Google Scholar 

  34. Beale, A.M., Gao, F., Lezcano-Gonzalez, I., Peden, C.H.F., and Szanyi, J., Chem. Soc. Rev., 2015, vol. 44, no. 20, pp. 7371–7405.

    Article  CAS  Google Scholar 

  35. Godiksen, A., Vennestrom, P.N.R., Rasmussen, S.B., and Mossin, S., Top. Catal., 2017, vol. 60, pp. 13–29.

    Article  CAS  Google Scholar 

  36. Godiksen, A., Stappen, F.N., Vennestrom, P.N.R., Giordanino, F., Rasmussen, S.B., Lundegaard, L.F., and Mossin, S., J. Phys. Chem. C, 2014, vol. 118, no. 40, pp. 23126–23138.

    Article  CAS  Google Scholar 

  37. Fan, S., Xue, J., Yu, T., Fan, D., Hao, T., Shen, M., and Li, W., Catal. Sci. Technol., 2013, vol. 3, no. 9, pp. 2357–2364.

    Article  CAS  Google Scholar 

  38. Yu, T., Fan, D., Hao, T., Wang, J., Shen, M., and Li, W., Chem. Eng. J., 2014, vol. 243, pp. 159–168.

    Article  CAS  Google Scholar 

Download references

Funding

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the grant no. 104.05-2018.306 and Vingroup Innovation Foundation (VINIF) under the grant no. VINIF.2019.TS.74. This work has been also supported by the RoHan Project funded by the German Academic Exchange Service (DAAD, no. 57315854) and the Federal Ministry for Economic Cooperation and Development (BMZ) inside the framework “SDG Bilateral Graduate school programmed”.

Author information

Authors and Affiliations

Authors

Contributions

This paper is published in the original.

Corresponding author

Correspondence to Pham Thanh Huyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuan Doan, Dang, A., Nguyen, D. et al. Influence of Aluminum Sources on Synthesis of SAPO-34 and NH3-SCR of NOx by as-Prepared Cu/SAPO-34 Catalysts. Catal. Ind. 13, 27–37 (2021). https://doi.org/10.1134/S2070050421010098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050421010098

Keywords:

Navigation