Skip to main content
Log in

Low-Temperature Steam Conversion of Natural Gas to Methane–Hydrogen Mixtures

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

A thermodynamic analysis is performed of the patterns of steam conversion of natural gas at temperatures of 300–600°C, pressures of 0.1–4 MPa and H2O : C molar ratios of 0.8‒1.2. Under these conditions, the reaction product is methane–hydrogen mixtures with hydrogen concentrations of 10–30 vol %. A rise in temperature, molar ratio Н2О : С, and a decrease in pressure contribute to an increase in the concentration of hydrogen in the reaction products. The thermodynamic boundaries of the process with no carbonization of the catalyst are determined. Experiments are performed to obtain methane–hydrogen mixtures from methane with an output concentration of 15–35 vol % hydrogen on industrial Ni-CrOx-Al2O3 catalyst at 325–425°C, a H2O : C molar ratio of 0.8–1.0, and atmospheric pressure. It is shown that under these conditions, the process proceeds without the formation of carbon on the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bauer, C.G. and Forest, T.W., Int. J. Hydrogen Energy, 2001, vol. 26, no. 1, pp. 55–70. https://doi.org/10.1016/S0360-3199(00)00067-7

    Article  CAS  Google Scholar 

  2. Swain, M.R., Yuzuf, M.J., Dülger, Z., and Swain, M.N., SAE [Tech. Pap.], 1993. https://doi.org/10.4271/932775

  3. Cattelan, A. and Wallace, J., SAE [Tech. Pap.], 1995. https://doi.org/10.4271/952497

  4. Cinti, G., Bidini, G., and Hemmes, K., Appl. Energy, 2019, vol. 238, pp. 69–77. https://doi.org/10.1016/j.apenergy.2019.01.039

    Article  CAS  Google Scholar 

  5. Kwak, B.S., Lee, J.S., Lee, J.S., Choi, B.-H., Ji, M.J., and Kang, M., Appl. Energy, 2011, vol. 88, no. 12, pp. 4366–4375. https://doi.org/10.1016/j.apenergy.2011.05.017

    Article  CAS  Google Scholar 

  6. Li, X., Zhu, G., Qi, S., Huang, J., and Yang, B., Appl. Energy, 2014, vol. 130, pp. 846–852. https://doi.org/10.1016/j.apenergy.2014.01.056

    Article  CAS  Google Scholar 

  7. Cavinato, C., Bolzonella, D., Fatone, F., Cecchi, F., and Pavan, P., Bioresour. Technol., 2011, vol. 102, no. 18, pp. 8605–8611. https://doi.org/10.1016/j.biortech.2011.03.084

    Article  CAS  PubMed  Google Scholar 

  8. Liu, Z., Zhang, C., Lu, Y., Wu, X., Wang, L., Wang, L., Han, B., and Xing, X.-H., Bioresour. Technol., 2013, vol. 135, pp. 292–303. https://doi.org/10.1016/j.biortech.2012.10.027

    Article  CAS  PubMed  Google Scholar 

  9. Elreedy, A., Tawfik, A., Kubota, K., Shimada, Y., and Harada, H., Int. Biodeterior. Biodegrad., 2015, vol. 105, pp. 252–261. https://doi.org/10.1016/j.ibiod.2015.09.015

    Article  CAS  Google Scholar 

  10. Sun, C., Xia, A., Liao, Q., Fu, Q., Huang, Y., and Zhu, X., Renewable Sustainable Energy Rev., 2019, vol. 112, pp. 395–410. https://doi.org/10.1016/j.rser.2019.05.061

    Article  CAS  Google Scholar 

  11. Lunprom, S., Phanduang, O., Salakkam, A., Liao, Q., Imai, T., and Reungsang, A., Int. J. Hydrogen Energy, 2019, vol. 44, no. 6, pp. 3339–3346. https://doi.org/10.1016/j.ijhydene.2018.09.064

    Article  CAS  Google Scholar 

  12. Elreedy, A., Fujii, M., and Tawfik, A., Bioresour. Technol., 2017, vol. 223, pp. 10–19. https://doi.org/10.1016/j.biortech.2016.10.026

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Z., Li, Q., Zhang, C., Wang, L., Han, B., Li, B., Zhang, Y., Chen, H., and Xing, X.-H., Biochem. Eng. J., 2014, vol. 90, pp. 234–238. https://doi.org/10.1016/j.bej.2014.06.013

    Article  CAS  Google Scholar 

  14. Harrabin, R., Climate change hope for hydrogen fuel. BBC News. www.bbc.com/news/science-environment-50873047. Cited July 15, 2020.

  15. Aksyutin, O.E., Ishkov, A.G., Romanov, K.V., Teterevlev, R.V., and Pystina, E.A., Vesti Gaz. Nauki, 2017, vol. 5, no. 33, pp. 12–20.

    Google Scholar 

  16. Rostrup-Nielsen, J. and Christiansen, L.J., Catalytic Science Series, vol. 10: Concepts in Syngas Manufacture, London: Imperial College Press, 2011.

    Book  Google Scholar 

  17. Berlin, M.A., Gorechenkov, V.G., and Kapralov, V.P., Kvalifitsirovannaya pervichnaya pererabotka neftyanykh i prirodnykh uglevodorodnykh gazov (Qualified Primary Processing of Petroleum and Natural Hydrocarbon Gases), Krasnodar: Sovetskaya Kuban’, 2012.

  18. Snytnikov, P.V., Potemkin, D.I., Uskov, S.I., Kurochkin, A.V., Kirillov, V.A., and Sobyanin, V.A., Catal. Ind., 2018, vol. 10, no. 3, pp. 202–216. https://doi.org/10.1134/S207005041803011X

    Article  Google Scholar 

  19. Zyryanova, M.M., Snytnikov, P.V., Amosov, Yu.I., Belyaev, V.D., Kireenkov, V.V., Kuzin, N.A., Vernikov-skaya, M.V., Kirillov, V.A., and Sobyanin, V.A., Fuel, 2013, vol. 108, pp. 282–291. https://doi.org/10.1016/j.fuel.2013.02.047

    Article  CAS  Google Scholar 

  20. Uskov, S.I., Enikeeva, L.V., Potemkin, D.I., Belyaev, V.D., Snytnikov, P.V., Gubaidullin, I.M., Kirillov, V.A., and Sobyanin, V.A., Catal. Ind., 2017, vol. 9, no. 2, pp. 104–109. https://doi.org/10.1134/S2070050417020118

    Article  Google Scholar 

  21. Uskov, S.I., Potemkin, D.I., Shigarov, A.B., Snytnikov, P.V., Kirillov, V.A., and Sobyanin, V.A., Chem. Eng. J., 2019, vol. 368, pp. 533–540. https://doi.org/10.1016/j.cej.2019.02.189

    Article  CAS  Google Scholar 

  22. Golosman, E.Z. and Efremov, V.N., Catal. Ind., 2012, vol. 4, no. 4, pp. 267—283. https://doi.org/10.1134/S2070050412040071

    Article  Google Scholar 

  23. Uskov, S.I., Potemkin, D.I., Snytnikov, P.V., Be-lyaev, V.D., Bulavchenko, O.A., Simonov, P.A., and Sobyanin, V.A., Mater. Lett., 2018, vol. 221, pp. 18–21. https://doi.org/10.1016/j.matlet.2018.03.010

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Higher Education and Science of the Russian Federation, agreement no. 05.607.21.0311 of December 2, 2019, unique identifier RFMEFI60719X0311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Potemkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potemkin, D.I., Uskov, S.I., Gorlova, A.M. et al. Low-Temperature Steam Conversion of Natural Gas to Methane–Hydrogen Mixtures. Catal. Ind. 12, 244–249 (2020). https://doi.org/10.1134/S2070050420030101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050420030101

Keywords:

Navigation