Skip to main content
Log in

Steam reforming of monoatomic aliphatic alcohols: factors affecting an equilibrium composition of products

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The results of calculations of thermodynamic equilibria published over the last 15 years and experimental data for the catalytic steam reforming of ethanol, propanol, and n- and isobutyl alcohols were analyzed. When the conversion of the initial alcohol and yield of H2 approach equilibrium values, the selectivity to CO, CO2, and methane can both approach the equilibrium values and appreciably differ from them depending on the catalyst and reaction conditions. This illustrates a complicated character of the kinetic control of reforming reactions and demonstrates a possibility of generating either hydrogen, or synthesis-gas enriched in hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Lobo, E. Dorta, Woodhead Pub., 2019, 19, 639; DOI: https://doi.org/10.1016/B978-0-12-813276-0.00019-5.

    Google Scholar 

  2. P. Spolaore, C. Joannis-Cassan, E. Duran, A. Isambert, J. Biosci. Bioeng., 2006, 101, 87; DOI: https://doi.org/10.1263/jbb.101.87.

    Article  CAS  PubMed  Google Scholar 

  3. M. Gavrilescu, Y. Chisti, Biotechnol. Adv., 2005, 23, 471; DOI: https://doi.org/10.1016/j.biotechadv.2005.03.004.

    Article  CAS  PubMed  Google Scholar 

  4. A. S. Miron, M. C. C. Garcia, A. C. Gomes, F. G. Camacho, E. M. Grima, Y. Chisti, Biochem. Eng. J., 2003, 16, 287; DOI: https://doi.org/10.1016/S1369-703X(03)00072-X.

    Article  CAS  Google Scholar 

  5. G. Kumar, J. Dharmaraja, S. Arvindnarayan, S. Shoban, P. Bakonyi, G. D. Saratale, N. Nemestóthy, K. Bélafi-Bakó, J.-J. Yoon, S.-H. Kim, Fuel, 2019, 251, 352; DOI: https://doi.org/10.1016/j.fuel.2019.04.049.

    Article  CAS  Google Scholar 

  6. K. Zhang, F. Zhang, Y.-R. Wu, Sci. Total Environ., 2021, 784, 147024; DOI: https://doi.org/10.1016/j.scitotenv.2021.147024.

    Article  CAS  PubMed  Google Scholar 

  7. S. D. Davidson, H. Zhang, J. Sun, Y. Wang, Dalton Trans., 2014, 43, 11782; DOI: https://doi.org/10.1039/C4DT00521J.

    Article  CAS  PubMed  Google Scholar 

  8. D. Li, X. Li, J. Gong, Chem. Rev., 2016, 116, 11529; DOI: https://doi.org/10.1021/acs.chemrev.6b00099.

    Article  CAS  PubMed  Google Scholar 

  9. A. Palanisamy, N. Soundarrajan, G. Ramasamy, Env. Sci. Poll. Res., 2021, 28, 63690; DOI: https://doi.org/10.1007/s11356-021-14554-6.

    Article  CAS  Google Scholar 

  10. Y.-J. Ko, J. Cha, W.-Y. Jeong, M.-E. Lee, B.-H. Cho, B. Nisha, H. J. Jeong, S. E. Park, S. O. Han, Bioresource Technology, 2022, 354, 127171; DOI: https://doi.org/10.1016/j.biortech.2022.127171.

    Article  CAS  PubMed  Google Scholar 

  11. P. Narueworanon, L. Laopaiboon, N. Phukoetphim, P. Laopaiboon, Energy, 2020, 13, 694; DOI: https://doi.org/10.3390/en13030694.

    CAS  Google Scholar 

  12. W. Klinthong, Y.-H. Yang, C.-H. Huang, C.-S. Tan, Aerosol Air Qual. Res., 2015, 15, 712; DOI: https://doi.org/10.4209/aaqr.2014.11.0299.

    Article  CAS  Google Scholar 

  13. https://pubchem.ncbi.nlm.nih.gov/patent/US-8133715-B2.

  14. https://pubchem.ncbi.nlm.nih.gov/patent/US-8273558-B2.

  15. https://www.bio.org/sites/default/files/legacy/bioorg/docs/1030AM-Christopher%20Ryan.pdf.

  16. https://gevo.com/why-biofuels/types-of-biofuels/.

  17. D.-I. Lia, M. J. Nelson, M. G. Bramucci, Patent WO 2008130995A3, 2008.

  18. A. G. Dedov, A. A. Karavaev, A. S. Loktev, A. K. Osipov, Petroleum Chemistry, 2021, 61, 1139; DOI: https://doi.org/10.1134/S0965544121110165.

    Article  CAS  Google Scholar 

  19. S. Anil, S. Indraja, R. Singh, S. Appari, B. Roy, Int. J. Hydrogen Energy, 2022, 47, 8177; DOI: https://doi.org/10.1016/j.ijhydene.2021.12.183.

    Article  CAS  Google Scholar 

  20. H. Yu, Y. Li, C. Xu, F. Jin, F. Ye, X. Li, Energy Storage and Saving, 2022, 1, 53; DOI: https://doi.org/10.1016/j.enss.2021.12.001.

    Article  CAS  Google Scholar 

  21. N. Sanchez, R. Ruiz, V. Hacker, M. Cobo, Int. J. Hydrogen Energy, 2020, 45, 11923; DOI: https://doi.org/10.1016/j.ijhydene.2020.02.159.

    Article  CAS  Google Scholar 

  22. S. Ogo, Y. Sekine, Fuel Processing Tech., 2020, 199, 106238; DOI: https://doi.org/10.1016/j.fuproc.2019.106238.

    Article  CAS  Google Scholar 

  23. Y. I. Pyatnitsky, L. Y. Dolgykh, I. L. Stolyarchuk, P. E. Strizhak, Theor. Exp. Chem., 2013, 49, 277; DOI: https://doi.org/10.1007/s11237-013-9327-5.

    Article  CAS  Google Scholar 

  24. M. Tahir, W. Mulewa, N. A. S. Amin, Z. Y. Zakaria, Energy Convers. Mgmt., 2017, 154, 25; DOI: https://doi.org/10.1016/j.enconman.2017.10.042.

    Article  CAS  Google Scholar 

  25. C. Diagne, H. Idriss, K. Pearson, M. A. Gomez-Garcia, A. Kiennemann, C. R. Chim., 2004, 7, 617; DOI: https://doi.org/10.1016/j.crci.2004.03.004.

    Article  CAS  Google Scholar 

  26. J. Llorca, P. R. de la Piscina, J. Dalmon, J. Sales, N. Homs, Appl. Catal. B., 2003, 43, 355; DOI: https://doi.org/10.1016/S0926-3373(02)00326-0.

    Article  CAS  Google Scholar 

  27. J. Llorca, N. Homs, J. Sales, J.-L. G. Fierro, P. R. de la Piscina, J. Catal., 2004, 222, 470; DOI: https://doi.org/10.1016/j.jcat.2003.12.008.

    Article  CAS  Google Scholar 

  28. V. A. de la Pena O’Shea, R. Nafria, P. R. de la Piscina, N. Homs, Int. J. Hydrogen Energy, 2008, 33, 3601; DOI: https://doi.org/10.1016/j.ijhydene.2007.10.049.

    Article  Google Scholar 

  29. S. Turczyniak, M. Greluk, G. Słowik, W. Gac, S. Zafeiratos, A. Machocki, ChemCatChem, 2017, 9, 782; DOI: https://doi.org/10.1002/cctc.201601343.

    Article  CAS  Google Scholar 

  30. S. J. Han, J. H. Song, J. Yoo, S. Park, K. H. Kang, I. K. Song, Int. J. Hydrogen Energy, 2017, 42, 5886; DOI: https://doi.org/10.1016/j.ijhydene.2016.12.075.

    Article  CAS  Google Scholar 

  31. H. Sohn, G. Celik, S. Gunduz, D. Dogu, S. Zhang, J. Shan, F. F. Tao, U. S. Ozkan, Catal. Lett., 2017, 147, 2863; DOI: https://doi.org/10.1007/s10562-017-2176-4.

    Article  CAS  Google Scholar 

  32. N. Prasongthum, R. Xiao, H. Zhang, N. Tsubaki, P. Nate-wong, P. Reubroycharoen, Fuel Process. Technol., 2017, 160, 185; DOI: https://doi.org/10.1016/j.fuproc.2017.02.036.

    Article  CAS  Google Scholar 

  33. T. Nejat, P. Jalalinezhad, F. Hormozi, Z. Bahrami, J. Taiwan Inst. Chem. Eng., 2019, 97, 216; DOI: https://doi.org/10.1016/j.jtice.2019.01.025.

    Article  CAS  Google Scholar 

  34. G. Garbarino, T. Cavattoni, P. Riani, R. Brescia, F. Canepa, G. Busca, Catal. Lett., 2019, 149, 929; DOI: https://doi.org/10.1007/s10562-019-02688-9.

    Article  CAS  Google Scholar 

  35. K. M. Kim, B. S. Kwak, Y. Im, N. Park, T. J. Lee, S. T. Lee, M. Kang, J. Ind. Eng. Chem., 2017, 51, 140; DOI: https://doi.org/10.1016/j.jiec.2017.02.025.

    Article  CAS  Google Scholar 

  36. M. Chen, C. Wang, Y. Wang, Z. Tang, Z. Yang, H. Zhang, J. Wang, Fuel, 2019, 247, 344; DOI: https://doi.org/10.1016/j.fuel.2019.03.059.

    Article  CAS  Google Scholar 

  37. F. Cheng, V. Dupont, Catalysts., 2017, 7, 114; DOI: https://doi.org/10.3390/catal7040114.

    Article  Google Scholar 

  38. A. C. V. Olivares, M. F. Gomez, M. N. Barroso, M. C. Abello, Int. J. Ind. Chem., 2018, 9, 61; DOI: https://doi.org/10.1007/s40090-018-0135-6.

    Article  Google Scholar 

  39. F. Frusteri, S. Freni, L. Spadaro, V. Chiodo, G. Bonura, S. Donato, S. Cavallaro, Catal. Commun., 2004, 5, 611; DOI: https://doi.org/10.1016/j.catcom.2004.07.015.

    Article  CAS  Google Scholar 

  40. M. Chen, Y. Wang, Z. Yang, T. Liang, S. Liu, Z. Zhou, X. Li, Fuel, 2018, 220, 32; DOI: https://doi.org/10.1016/j.fuel.2018.02.013.

    Article  CAS  Google Scholar 

  41. D. K. Liguras, D. I. Kondarides, X. E. Verykios, Appl. Catal. B., 2003, 43, 345; DOI: https://doi.org/10.1016/S0926-3373(02)00327-2.

    Article  CAS  Google Scholar 

  42. M. Ni, D. Y. C. Leung, M. K. H. Leung, Int. J. Hydrogen Energy, 2007, 32, 3238; DOI: https://doi.org/10.1016/j.ijhydene.2007.04.038.

    Article  CAS  Google Scholar 

  43. S. Ogo, Y. Sekine, Fuel Proc. Technol., 2020, 199, 106238; DOI: https://doi.org/10.1016/j.fuproc.2019.106238.

    Article  CAS  Google Scholar 

  44. Y. I. Pyatnitsky, L. Yu. Dolgikh, P. E. Strizhak, Theor. Exp. Chem., 2021, 57, 71; DOI: https://doi.org/10.1007/s11237-021-09676-4.

    Article  CAS  Google Scholar 

  45. A. D. Aleskerli, V. L. Bagiyev, J. I. Mirzai, Kimya Problemleri, 2011, 4, 617.

    Google Scholar 

  46. G. Xiong, P. Li, S. Zhang, X. Zhou, X. Pan, W. Zhou, Huaxue Fanying Gongcheng Yu Gongyi, 2010, 26, 104.

    CAS  Google Scholar 

  47. B. Kumar, Sh. Kumar, Su. Kumar, J. Environ. Chem. Eng., 2017, 5, 5876; DOI: https://doi.org/10.1016/j.jece.2017.10.049.

    Article  CAS  Google Scholar 

  48. B. Kumar, Sh. Kumar, Su. Kumar, Int. J. Hydrogen Energy, 2018, 43, 6491; DOI: https://doi.org/10.1016/j.ijhydene.2018.02.058.

    Article  CAS  Google Scholar 

  49. K. Bizkarra, V. L. Barrio, A. Yartu, J. Requies, P. L. Arias, J. F. Cambra, Int. J. Hydrogen Energy, 2015, 40, 5272; DOI: https://doi.org/10.1016/j.ijhydene.2015.01.055.

    Article  CAS  Google Scholar 

  50. Y. Li, L. Zhang, Z. Zhang, Q. Liu, S. Zhang, Q. Liu, G. Hu, Y. Wang, X. Hu, Appl. Catal. A, 2019, 584, 117162; DOI: https://doi.org/10.1016/j.apcata.2019.117162.

    Article  Google Scholar 

  51. J. P. da S. Q. Menezes, A. P. dos S. Dias, M. A. P. da Silva, M. M. V. M. Souza, Biomass and Bioenergy, 2020, 143, 105882; DOI: https://doi.org/10.1016/j.biombioe.2020.105882.

    Article  CAS  Google Scholar 

  52. A. K. Yadav, P. D. Vaidya, Int. J. Hydrogen Energy, 2019, 44, 30014; DOI: https://doi.org/10.1016/j.ijhydene.2019.09.054.

    Article  CAS  Google Scholar 

  53. V. Dhanala, S. K. Maity, D. Shee, J. Ind. Eng. Chem., 2015, 27, 153; DOI: https://doi.org/10.1016/j.jiec.2014.12.029.

    Article  CAS  Google Scholar 

  54. V. Dhanala, S. K. Maity, D. Shee, RSC Adv., 2015, 5, 52522; DOI: https://doi.org/10.1039/C5RA03558A.

    Article  CAS  Google Scholar 

  55. B. Roy, H. Sullivan, C. A. Leclerc, J. Pow. Sources, 2014, 267, 280; DOI: https://doi.org/10.1016/j.jpowsour.2014.05.090.

    Article  CAS  Google Scholar 

  56. V. Dhanala, S. K. Maity, D. Shee, RSC Adv., 2013, 3, 24521; DOI: https://doi.org/10.1039/C3RA44705G.

    Article  CAS  Google Scholar 

  57. A. G. Dedov, A. A. Karavaev, A. S. Loktev, A. S. Mitinenko, I. I. Moiseev, Catal. Today, 2021, 367, 199; DOI: https://doi.org/10.1016/j.cattod.2020.04.064.

    Article  CAS  Google Scholar 

  58. M. S. Likhanov, A. V. Shevelkov, Russ. Chem. Bull., 2020, 69, 2231; DOI: https://doi.org/10.1007/s11172-020-3047-5.

    Article  CAS  Google Scholar 

  59. V. M. Pugachev, Yu. A. Zaharov, A. S. Valnyukova, V. G. Dodonov, K. A. Datiy, Russ. Chem. Bull., 2018, 67, 1018; DOI: https://doi.org/10.1007/s11172-018-2173-9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kulikova.

Additional information

This work was financially supported by the Russian Science Foundation (Project No. 22-23-00902 “Development of Catalysts of the New Type for Hydrogen Generation from Products of Biomass Processing,” 2022–2023).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1837–1846, September, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’min, A.E., Kulikova, M.V., Osipov, A.K. et al. Steam reforming of monoatomic aliphatic alcohols: factors affecting an equilibrium composition of products. Russ Chem Bull 71, 1837–1846 (2022). https://doi.org/10.1007/s11172-022-3600-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3600-5

Key words

Navigation