Skip to main content
Log in

A microfiber catalyst with lemniscate structural elements

  • Domestic Catalysts
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

A new type of catalyst based on microfiber supports with microfibers twined into looped threads (lemniscate) that in turn form a structured flexible stable and geometrically regular bulk bed permeable to a reaction flow and not requiring any additional structurial elements is described. Deep toluene oxidation experiments show that the proposed platinum lemniscate glass-fiber catalyst (LGFC) considerably surpasses (by 8–10 times and more) familiar geometric types of catalysts, microfiber and otherwise, in both the specific observed activity per unit active component mass and the ratio between the observed activity and the specific hydraulic resistance. The reason for its superiority is a uniquely high efficiency of mass transfer in the external diffusion region of reactions. Among the promising fields of application for the proposed systems are fast gasphase catalytic reactions, liquid-phase catalytic reactions, and complicated reaction processes, in which the selectivity and the yield of target products are sensitive to diffusion inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boreskov, G.K., Geterogennyi kataliz (Heterogeneous Catalysis), Novosibirsk Nauka, 1986.

    Google Scholar 

  2. Cybulski, A. and Moulijn, J.A., Catal. Rev.: Sci. Eng., 1994, vol. 36, no. 2, pp. 179–270.

    Article  CAS  Google Scholar 

  3. Roy, S., Bauer, T., Al-Dahhan, M., Lehner, P., and Turek, T., AIChE J., 2004, vol. 50, no. 11, pp. 2918–2938.

    Article  CAS  Google Scholar 

  4. Pestryakov, A.N., Fyodorov, A.A., and Shurov, V.A., React. Kinet. Catal. Lett., 1994, vol. 53, no. 2, pp. 347–352.

    Article  CAS  Google Scholar 

  5. Richardson, J.T., Remue, D., and Hung, J.-K., Appl. Catal., A, 2003, vol. 250, no. 2, pp. 319–329.

    Article  CAS  Google Scholar 

  6. Giani, L., Groppi, G., and Tronconi, E., Ind. Eng. Chem. Res., 2005, vol. 44, no. 14, pp. 4993–5002.

    Article  CAS  Google Scholar 

  7. Twigg, M.V. and Richardson, J.T., Ind. Eng. Chem. Res., 2007, vol. 46, no. 12, pp. 4166–4177.

    Article  CAS  Google Scholar 

  8. Incera Garrido, G., Patcas, F.C., Lang, S., and Kraushaar-Czarnetzki, B., Chem. Eng. Sci., 2008, vol. 63, no. 21, pp. 5202–5217.

    Article  CAS  Google Scholar 

  9. Jiang, Z., Chung, K.-S., Kim, G.-R., and Chung, J.-S., Chem. Eng. Sci., 2003, vol. 58, no. 7, pp. 1103–1111.

    Article  CAS  Google Scholar 

  10. Sun, H., Shu, Y., Quan, X., Chen, S., Pang, B., and Liu, Z.Y., Chem. Eng. J., 2010, vol. 165, no. 3, pp. 769–775.

    Article  CAS  Google Scholar 

  11. Banús, E.D., Sanz, O., Milt, V.G., Miró, E.E., and Montes, M., Chem. Eng. J., 2014, vol. 246, pp. 353–365.

    Article  Google Scholar 

  12. Porsin, A.V., Kulikov, A.V., Dalyuk, I.K., Rogozhnikov, V.N., and Kochergin, V.I., Chem. Eng. J., 2015, vol. 282, pp. 233–240.

    Article  CAS  Google Scholar 

  13. Balzhinimaev, B.S., Paukshtis, E.A., Vanag, S.V., Suknev, A.P., and Zagoruiko, A.N., Catal. Today, 2010, vol. 151, pp. 195–199.

    Article  CAS  Google Scholar 

  14. Lopatin, S.A., Tsyrulnikov, P.G., Kotolevich, Y.S., Mikenin, P.E., Pisarev, D.A., and Zagoruiko, A.N., Catal. Ind., 2015, vol. 7, no. 4, pp. 329–334.

    Article  Google Scholar 

  15. Mikenin, P.E., Tsyrulnikov, P.G., Kotolevich, Y.S., and Zagoruiko, A.N., Catal. Ind., 2015, vol. 7, no. 2, pp. 155–160.

    Article  Google Scholar 

  16. Pei, T., Liu, L., Xu, L., Li, Y., and He, D., Catal. Commun., 2016, vol. 74, pp. 19–23.

    Article  CAS  Google Scholar 

  17. Desyatikh, I.V., Vedyagin, A.A., Kotolevich, Yu.S., and Tsyrul’nikov, P.G., Combust., Explos. Shock Waves, 2011, vol. 47, no. 6, pp. 677–682.

    Article  Google Scholar 

  18. Kotolevich, Y.S., Khramov, E.V., Mironenko, O.O., Zubavichus, Ya.V., Murzin, V.Yu., Frey, D.I., Metelev, S.E., Shitova, N.B., and Tsyrulnikov, P.G., Int. J. Self-Propag. High-Temp. Synth., 2014, vol. 23, no. 1, pp. 9–17.

    Article  CAS  Google Scholar 

  19. Lopatin, S., Mikenin, P., Pisarev, D., Baranov, D., Zazhigalov, S., and Zagoruiko, A., Chem. Eng. J., 2015, vol. 282, pp. 58–65.

    Article  CAS  Google Scholar 

  20. Lopatin, S.A. and Zagoruiko, A.N., Chem. Eng. J., 2014, vol. 238, pp. 31–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lopatin.

Additional information

Original Russian Text © S.A. Lopatin, P.E. Mikenin, D.A. Pisarev, S.V. Zazhigalov, D.V. Baranov, A.N. Zagoruiko, 2016, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopatin, S.A., Mikenin, P.E., Pisarev, D.A. et al. A microfiber catalyst with lemniscate structural elements. Catal. Ind. 9, 39–47 (2017). https://doi.org/10.1134/S207005041701010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207005041701010X

Keywords

Navigation