Skip to main content
Log in

Glass-fiber woven catalysts as alternative catalytic materials for various industries. A review

  • Chemical Physics of Ecological Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The chemistry and technology of new versatile multipurpose catalytic systems developed and studied by the authors for the purposes of heterogeneous catalysis are reviewed. A theoretical background for a successful search for these new catalytic systems is based on an unconventional approach with emphasis on an essential role of branched-chain reaction mechanisms of heterogeneous catalysis previously developed by the authoring team. The catalytic systems under study are based on silica (aluminoborosilicate) glass-fiber amorphous matrices doped with various metals and manufactured as articles with various types of woven structure. The specific features of these glass-fiber woven catalytic systems, such as their structure, phase state of the matrix, manufacture and activation methods, design of catalytic reactors in which they operate, as well as production technologies and operation methods, make a compelling case to regard them as a new separate class of catalysts. As compared to conventional catalytic materials, these new catalysts are highly efficient in neutralizing industrial gas emissions, in contact stages of the production of nitric acid and sulfuric acid, in various reactions of catalytic hydrocarbon processing, in water purification from nitrate and nitrite contaminants, in catalytic heat generation, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ch. Krauns, V. Barelko, G. Fabre, et al., Catal. Lett. 72, 161 (2001).

    Article  CAS  Google Scholar 

  2. L. G. Simonova, V. V. Barelko, O. B. Lapina, E. A. Paukshtis, V. V. Terskikh, V. I. Zaikovskii, and B. S. Bal’zhinimaev, Kinet. Catal. 42, 693 (2001).

    Article  CAS  Google Scholar 

  3. L. G. Simonova, V. V. Barelko, E. A. Paukshtis, O. B. Lapina, V. V. Terskikh, V. I. Zaikovskii, and B. S. Bal’zhinimaev, Kinet. Catal. 42, 828 (2001).

    Article  CAS  Google Scholar 

  4. L. G. Simonova, V. V. Barelko, A. V. Toktarev, V. I. Zaikovskii, V. I. Bukhtiyarov, V. V. Kaichev, and B. S. Bal’zhinimaev, Kinet. Catal. 42, 837 (2001).

    Article  CAS  Google Scholar 

  5. T. Gotoh, S. Nakamura, J. Abe, et al., US Patent No. 4038214 (1977).

    Google Scholar 

  6. O. Nakamura, Jpn. Patent No. 22145 (1980).

    Google Scholar 

  7. J. Yagi, H. Nakamura, and M. Fukai, Jpn. Patent No. 137752 (1988).

    Google Scholar 

  8. V. V. Barelko, B. S. Bal’zhinimaev, S. P. Kil’dyashev, et al., RF Patent No. 2143948, Byull. Izobret. No. 1 (2000).

    Google Scholar 

  9. V. V. Barelko, I. A. Yuranov, A. F. Cherashev, A. P. Khrushch, V. A. Matyshak, T. I. Khomenko, O. N. Sil’chenkova, and O. V. Krylov, Dokl. Phys. Chem. 361, 233 (1998).

    Google Scholar 

  10. I. Yuranov, L. Kiwi-Minsker, V. Barelko, et al., in Reaction Kinetics and Development of Catalytic Processes, Ed. by G. F. Froment and K. C. Waugh (Elsevier Science B.V., Amsterdam, 1999), p. 191.

    Book  Google Scholar 

  11. V. V. Barelko, A. A. Prudnikov, L. A. Bykov, et al., RF Patent No. 2171430, Byull. Izobret. No. 21 (2001).

    Google Scholar 

  12. V. V. Barelko, A. P. Khrushch, A. F. Cherashev, I. A. Yuranov, V. A. Matyshak, O. N. Sil’chenkova, T. I. Khomenko, and O. V. Krylov, Kinet. Catal. 41, 655 (2000).

    Article  CAS  Google Scholar 

  13. V. V. Barelko, P. I. Khal’zov, V. Ya. Onishchenko, et al., RF Patent No. 2069584, Byull. Izobret. No. 33 (1996).

    Google Scholar 

  14. V. V. Barelko, P. I. Khal’zov, V. Ya. Onishchenko, et al., RF Patent No. 2069585, Byull. Izobret. No. 33 (1996).

    Google Scholar 

  15. V. V. Barelko, V. Ya. Onishchenko, B. S. Bal’zhinimaev, et al., RF Patent No. 2160157, Byull. Izobret. No. 34 (2000).

    Google Scholar 

  16. L. G. Simonova, B. S. Bal’zhinimaev, S. P. Kil’dyashev, et al., RF Patent No. 2158633, Byull. Izobret. No. 31 (2000).

    Google Scholar 

  17. L. G. Simonova, V. V. Barelko, A. V. Toktarev, A. F. Chernyshov, V. A. Chumachenko, and B. S. Balzhinimaev, Kinet. Catal. 43, 61 (2002).

    Article  CAS  Google Scholar 

  18. V. M. Zinchenko, V. Ya. Syropyatov, V. V. Barelko, et al., Metalloved. Term. Obrab. Met., No. 7, 7 (1997).

    Google Scholar 

  19. V. V. Barelko, A. P. Khrushch, A. F. Cherashev, I. A. Yuranov, V. A. Matyshak, O. N. Sil’chenkova, T. I. Khomenko, and O. V. Krylov, Kinet. Catal. 41, 655 (2000).

    Article  CAS  Google Scholar 

  20. V. Ya. Syropyatov, V. V. Barelko, and V. M. Zinchenko, RF Patent No. 2109080, Byull. Izobret. No. 11 (1998).

    Google Scholar 

  21. B. S. Bal’zhinimaev, V. V. Barelko, A. P. Suknev, E. A. Paukshtis, L. G. Simonova, V. B. Goncharov, V. L. Kirillov, and A. V. Toktarev, Kinet. Catal. 43, 542 (2002).

    Article  Google Scholar 

  22. V. V. Barelko, A. A. Fomin, S. I. Serdyukov, et al., RF Patent No. 2164814, Byull. Izobret. No. 10 (2001).

    Google Scholar 

  23. V. V. Barelko, I. A. Yuranov, A. A. Fomin, et al., RF Patent No. 2109039, Byull. Izobret. No. 11 (1998).

    Google Scholar 

  24. V. V. Barelko, P. I. Khal’zov, and S. M. Baturin, RF Patent No. 2081898, Byull. Izobret. No. 17 (1998).

    Google Scholar 

  25. V. V. Barelko, B. S. Bal’zhinimaev, S. P. Kil’dyashev, et al., RF Patent No. 2158632, Byull. Izobret. No. 31 (2001).

    Google Scholar 

  26. V. G. Dorokhov, V. V. Barelko, B. S. Bal’zhinimaev, et al., Khim. Prom-st., No. 8, 44 (1999).

    Google Scholar 

  27. Wu Chuntiag, V. G. Dorokhov, G. A. Boiko, B. S. Bal’zhinimaev, and V. V. Barelko, Dokl. Chem. 402, 111 (2005).

    Article  Google Scholar 

  28. V. G. Dorokhov, V. V. Barelko, B. S. Bal’zhinimaev, et al., RF Patent No. 2156654, Byull. Izobret. No. 27 (2000).

    Google Scholar 

  29. Yu. Matatov-Meytal, V. Barelko, I. Yuranov, et al., Appl. Catal., B: Environ. 27, 127 (2000).

    Article  Google Scholar 

  30. Yu. Matatov-Meytal, V. Barelko, I. Yuranov, et al., Appl. Catal., B: Environ. 31, 233 (2001).

    Article  Google Scholar 

  31. V. V. Barelko, I. A. Yuranov, M. Sheintukh, et al., RF Patent No. 2133226, Byull. Izobret. No. 20 (1999).

    Google Scholar 

  32. V. V. Barelko, N. P. Kuznetsova, B. S. Bal’zhinimaev, et al., RF Patent No. 2169612, Byull. Izobret. No. 18 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kuznetsov.

Additional information

Original Russian Text © V.V. Barelko, M.V. Kuznetsov, V.G. Dorokhov, I. Parkin, 2017, published in Khimicheskaya Fizika, 2017, Vol. 36, No. 7, pp. 75–89.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barelko, V.V., Kuznetsov, M.V., Dorokhov, V.G. et al. Glass-fiber woven catalysts as alternative catalytic materials for various industries. A review. Russ. J. Phys. Chem. B 11, 606–617 (2017). https://doi.org/10.1134/S1990793117040030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793117040030

Keywords

Navigation