Skip to main content
Log in

Characteristics of non-platinum cathode catalysts for a hydrogen–oxygen fuel cell with proton- and anion-conducting electrolytes

  • Electrocatalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Cathode catalysts for a hydrogen–oxygen fuel cell (FC) with proton-conducting (acidic) and anion-conducting (alkaline) electrolytes are synthesized via the pyrolysis of nitrogen-containing iron and cobalt complexes on the surfaces of highly disperse carbon materials. The catalysts are characterized by X-ray photoelectron spectroscopy (XPS) and tested under model conditions on a thin-layer disk electrode and as a part of a membrane electrode assembly of hydrogen–oxygen FCs. The properties of the CoFe/C system formed via the pyrolysis of macroheterocyclic cobalt and iron compounds on carbon materials (XC-72 soot and multiwall nanotubes (MNTs)) are described for the first time. According to XPS data, the surface of the CoFe/C catalytic systems is enriched with carbon (95.5 at %) and contains nitrogen (2 at %), oxygen (2 at %), and metals (0.5 at %). According to the results from electrochemical measurements under model conditions, the CoFe/MNT catalytic systems approaches 60% Pt/C (HiSPEC9100) commercial platinum catalyst according to their activity in the oxygen reduction reaction in an alkaline medium (0.5 M KOH). The half-wave potentials are 0.85 and 0.88 V for CoFe/MNT and 60% Pt/C (HiSPEC9100) catalysts, respectively. The maximum specific powers of hydrogen–oxygen FCs with anion-conducting electrolytes are 210 mW/cm2 (60% Pt/C (HiSPEC9100) based cathode) and 180 mW/cm2 (CoFe/MNT based cathode). The characteristics of a membrane electrode assembly with a non-platinum cathode correspond to the best analogs described in the literature. The results of this work show the prospects for further studies on scaling this technology for the synthesis of the proposed non-platinum cathode catalysts and optimizing the architecture of the membrane electrode assembly of FCs based on them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Fuel Cell Industry Review 2013. http://www. fuelcelltoday.com/media/1889744/fct_review_2013.pdf. Cited April 29, 2015.

  2. Fernandes, A.C. and Ticianelli, E.A., J. Power Sources, 2009, vol. 193, no. 2, pp. 547–554.

    Article  CAS  Google Scholar 

  3. Peighambardoust, S.J., Rowshanzamir, S., and Amjadi, M., Int. J. Hydrogen Energy, 2010, vol. 35, no. 17, pp. 9349–9384.

    Article  CAS  Google Scholar 

  4. Nasef, M.M. and Aly, A.A., Desalination, 2012, vol. 287, pp. 238–246.

    Article  CAS  Google Scholar 

  5. Merle, G., Wessling, M., and Nijmeijer, K., J. Membr. Sci., 2011, vol. 377, nos. 1–2, pp. 1–35.

    Article  CAS  Google Scholar 

  6. Fukuta, K., Electrolyte materials for AMFCs and AMFC performance. http://www1.eere.energy.gov/ hydrogenandfuelcells/pdfs/amfc_050811_fukuta.pdf. Cited April 29, 2015.

    Google Scholar 

  7. Varcoe, J.R., Slade, R.C.T., Wright, G.L., and Chen, Y., J. Phys. Chem. B, 2006, vol. 110, no. 42, pp. 21041–21049.

    Article  CAS  Google Scholar 

  8. Lu, S., Pan, J., Huang, A., Zhuang, L., and Lu, J., Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 52, pp. 20611–20614.

    Article  CAS  Google Scholar 

  9. Sheng, W., Bivens, A.P., Myint, M., Zhuang, Z., Chen, J.G., and Yan, Y., 224th ECS Meet. Abstr., San Francisco, CA, 2013, abstract 1367.

    Google Scholar 

  10. Hu, Q., Li, G., Pan, J., Tan, L., Lu, J., and Zhuang, L., Int. J. Hydrogen Energy, 2013, vol. 38, no. 36, pp. 16264–16268.

    Article  CAS  Google Scholar 

  11. Ng, J.W.D., Gorlin, Y., Nordlund, D., and Jaramillo, T.F., J. Electrochem. Soc., 2014, vol. 161, no. 7, pp. D3105–D3112.

    Article  CAS  Google Scholar 

  12. Tarasevich, M.R. and Korchagin, O.V., Russ. J. Electrochem., 2013, vol. 49, no. 7, pp. 600–618.

    Article  CAS  Google Scholar 

  13. Tarasevich, M.R., Mazin, P.V., and Kapustina, N.A., Russ. J. Electrochem., 2012, vol. 48, no. 11, pp. 1113–1122.

    Article  CAS  Google Scholar 

  14. Tarasevich, M.R., Mazin, P.V., and Kapustina, N.A., Russ. J. Electrochem., 2011, vol. 47, no. 8, pp. 923–932.

    Article  CAS  Google Scholar 

  15. Bogdanovskaya, V.A., Tarasevich, M.R., and Lozovaya, O.V., Russ. J. Electrochem., 2011, vol. 47, no. 7, pp. 846–860.

    Article  CAS  Google Scholar 

  16. Bogdanovskaya, V.A., Beketaeva, L.A., Rybalka, K.V., Efremov, B.N., Zagudaeva, N.M., Sakashita, M., Iidzima, T., and Ismagilov, Z.R., Russ. J. Electrochem., 2008, vol. 44, no. 3, pp. 293–302.

    Article  CAS  Google Scholar 

  17. Yang, Z., Nie, H., Chen, X., Chen, X., and Huang, S., J. Power Sources, 2013, vol. 236, pp. 238–249.

    Article  CAS  Google Scholar 

  18. Procedures for performing in-plane membrane conductivity testing. http://energy.gov/sites/prod/files/ 2014/03/f10/htmwg_may09_conductivity_testing.pdf. Cited August 14, 2015.

  19. Wang, H. and Turner, J.A., J. Power Sources, 2008, vol. 183, no. 2, pp. 576–580.

    Article  CAS  Google Scholar 

  20. Grew, K.N., Ren, X., and Chu, D., Electrochem. Solid-State Lett., 2011, vol. 14, no. 12, pp. B127–B131.

    Article  CAS  Google Scholar 

  21. Davydova, E.S. and Tarasevich, M.R., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 2, pp. 240–247.

    Article  CAS  Google Scholar 

  22. Finšgar, M., Fassbender, S., Hirth, S., and Milošev, I., Mater. Chem. Phys., 2009, vol. 116, no. 1, pp. 198–206.

    Article  Google Scholar 

  23. Pleskov, Yu.V. and Filinovskii, V.Yu., Vrashchayushchiisya diskovyi elektrod (Rotating Disk Electrode), Moscow: Nauka, 1972.

    Google Scholar 

  24. Tsivadze, A.Yu., Tarasevich, M.R., Kuzov, A.V., Kuznetsova, L.N., Lozovaya, O.V., Davydova, E.S., Dokl. Phys. Chem., 2012, vol. 442, no. 2, pp. 45–48.

    Article  CAS  Google Scholar 

  25. Tarasevich, M.R. and Korchagin, O.V., Russ. J. Electrochem., 2014, vol. 50, no. 8, pp. 737–750.

    Article  CAS  Google Scholar 

  26. Wu, J., Zhang, D., Wang, Y., Wan, Y., and Hou, B., J. Power Sources, 2012, vol. 198, pp. 122–126.

    Article  CAS  Google Scholar 

  27. Gunasekara, I., Lee, M., Abbott, D., and Mukerjee, S., ECS Electrochem. Lett., 2012, vol. 1, no. 2, pp. F16–F19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Korchagin.

Additional information

Original Russian Text © O.V. Korchagin, V.A. Bogdanovskaya, M.R. Tarasevich, A.V. Kuzov, G.V. Zhutaeva, M.V. Radina, V.T. Novikov, V.V. Zharikov, 0000, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korchagin, O.V., Bogdanovskaya, V.A., Tarasevich, M.R. et al. Characteristics of non-platinum cathode catalysts for a hydrogen–oxygen fuel cell with proton- and anion-conducting electrolytes. Catal. Ind. 8, 265–273 (2016). https://doi.org/10.1134/S2070050416030053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050416030053

Keywords

Navigation