Skip to main content
Log in

Selective reduction of nitrogen oxides by hydrocarbons on hydrotalcite Co and Ni catalysts

  • Catalysis and Environmental Protection
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Hydrotalcitelike Co-Al and Ni-Al catalysts of different compositions (with the atomic ratio M 2+/Al3+ = 0.5–3.0) were studied in the reaction of selective reduction of NO by propane, propylene, and n-decane in the presence of O2. The higher activity of the catalysts with M 2+/Al3+ = 0.5 is connected with high dispersity of Ni or Co cations stabilized by a significant amount of Al3+ ions. Propylene was shown to be the most efficient reducing agent for nitrogen oxide. The highest degree of conversion to the extent of 90–99% was attained at 400 and 420–440°C for Ni-Al and Co-Al samples, respectively. When propane and decane were used as reducing agents, the conversion of both catalysts was characterized by the volcano-shaped dependence on temperature due to the fact that the catalyst took part in the concurrent reaction of hydrocarbon (reducing agent) oxidation. Hydrotalcitelike materials are promising representatives of inexpensive bi- and multicomponent systems. The design strategy for new active catalysts for processes of purification of gas exhausts from NO x , that are stable in the presence of water and sulfur oxides, may be based on usage of hydrotalcites with modified ions introduced into them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parvulescu, V.I., Grange, P., and Delmon, B., Catal. Today, 1998, vol. 46, no. 4, p. 233.

    Article  CAS  Google Scholar 

  2. Sydbom, A. Blomberg, A., et al., Eur. Respir. J., 2001, vol. 17, no. 7, pp. 33–746.

    Google Scholar 

  3. Iwamoto, M. and Hamada, H., Catal. Today, 1991, vol. 10, no. 1, p. 57.

    Article  CAS  Google Scholar 

  4. Shelef, M., Chem. Rev., 1995, vol. 95, no. 1, p. 209.

    Article  CAS  Google Scholar 

  5. Amiridis, M.D., Zhang, T., and Farrauto, R.J., Appl. Catal., B, 1996, vol. 10, nos. 1–3, p. 283.

    Google Scholar 

  6. Burch, R., Breen, J.P., and Meunier, F.C., Appl. Catal., B, 2002, vol. 39, no. 4, p. 283.

    Article  CAS  Google Scholar 

  7. Glebov, L.S., Zakirova, A.G., et al., Neftekhimiya, 2002, vol. 42, no. 3, p. 163 [Pet. Chem. (Engl. Transl.), vol. 42, no. 3, p. 143].

    CAS  Google Scholar 

  8. Epling, W.S., Yezerets, A., Park, P., and Cooper, B., Catal. Today, 2006, vol. 114, no. 1, p. 1.

    Article  CAS  Google Scholar 

  9. Sadykov, V., Kuznetsova, T., et al., Catal. Today, 2006, vol. 114, no. 1, p. 13.

    Article  CAS  Google Scholar 

  10. Allmann, R., Chimia, 1970, vol. 24, no. 3, p. 99.

    CAS  Google Scholar 

  11. Taylor, H., Mineral. Mag., 1973, vol. 39, no. 394, p. 377.

    Article  CAS  Google Scholar 

  12. Drits. V., Sokolova T., Sokolova G., and Cherkashin V., Clays Clay Miner., 1987, vol. 35, no. 6, p. 401.

    Article  CAS  Google Scholar 

  13. Cavani, F., Trifirò, F., and Vaccari, A., Catal. Today, 1991, vol. 11, no. 2, p. 173.

    Article  CAS  Google Scholar 

  14. Trifirò, F., Vaccari, A., and Clause, O., Catal. Today, 1994, vol. 21, no. 1, p. 185.

    Article  Google Scholar 

  15. Vaccari, A., Catal. Today, 1998, vol. 41, nos. 1–3, p. 53.

    Article  CAS  Google Scholar 

  16. Vaccari, A., Appl. Clay Sci., 1999, vol. 14, no. 4, p. 161.

    Article  CAS  Google Scholar 

  17. Centi, G., Arena, G.E., and Perathoner, S., J. Catal., 2003, vol. 216, nos. 1–2, p. 443.

    Article  CAS  Google Scholar 

  18. Serwicka, E.M., Polish J. Chem., 2001, vol. 75, no. 3, p. 307.

    CAS  Google Scholar 

  19. Corma, A., Palomares, A.E., Rey, F., and Márquez, F., J. Catal., 1997, vol. 170, no. 1, p. 140.

    Article  CAS  Google Scholar 

  20. Palomares, A.E., López-Nieto, J.M., et al., Appl. Catal., B., 1999, vol. 20, no. 4, p. 257.

    Article  CAS  Google Scholar 

  21. Kannan, S. and Swamy, C.S., Appl. Catal., 1994, vol. 3, nos. 2–3, p. 109.

    Article  Google Scholar 

  22. Kannan, S. and Swamy, C.S., Catal. Today, 1999, vol. 53, no. 4, p. 725.

    Article  CAS  Google Scholar 

  23. Petkov, V. and Bakaltchev, N., J. Appl. Crystallogr., 1990, vol. 23, no. 2, p. 138.

    Article  Google Scholar 

  24. Klyachko-Gurvich, A., Izv. Akad. Nauk SSSR, Otdel Khim. Nauk, 1961, no. 10, p. 1884.

  25. Reichle, W.T., Yang, S.Y., and Everhardt, D.S., J. Catal., 1986, vol. 101, no. 2, p. 352.

    Article  CAS  Google Scholar 

  26. Chen, H.-Y., Voskoboinikov, T., and Sachtler, W.M.H., Catal. Today, 1999, vol. 54, p. 483.

    Article  CAS  Google Scholar 

  27. Shimizu, K., Maeshima, H., Satsuma, A., and Hattori, T., Appl. Catal. B, 1998, vol. 18, nos. 1–2, p. 163.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tret’yakov.

Additional information

Original Russian Text © V.F. Tret’yakov, A.G. Zakirova, A.A. Spozhakina, M.V. Gabrovska, R. Edreva-Kardzhieva, L.A. Petrov, 2010, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tret’yakov, V.F., Zakirova, A.G., Spozhakina, A.A. et al. Selective reduction of nitrogen oxides by hydrocarbons on hydrotalcite Co and Ni catalysts. Catal. Ind. 2, 62–66 (2010). https://doi.org/10.1134/S2070050410010101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050410010101

Keywords

Navigation