Skip to main content
Log in

Features of Carbon Dioxide and Monoxide Hydrogenation in the Presence of ZnO/Al2O3 and ZnO

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A ZnO/Al2O3 catalyst synthesized by impregnating gamma-alumina from a zinc nitrate solution and calcination at 400°C is studied in the hydrogenation of carbon oxides. During heating in a stream of a 2.4% H2/N2 mixture to 400°С, ZnO undergoes partial reduction. The activity of the reduced catalyst is studied in a range of 300–400°С at 5 MPa and a space velocity of 6000 NL \({\text{kg}}_{{{\text{cat}}}}^{{ - 1}}\) h−1. The main product of CO hydrogenation is methanol. In addition, the methanol dehydration and CO methanation reactions occur. Water formed during methanol dehydration provides the formation of CO2 via the CO steam reforming reaction. With an increase in temperature from 300 to 400°C, the selectivity for oxygenates (methanol and dimethyl ether, in terms of methanol) decreases from ~74 to 56%, while the selectivity for hydrocarbons (methane, ethane, ethylene, propane) increases from 1 to 14%. The main products of CO2 hydrogenation are CO and H2O. The formation of oxygenates and a small amount of methane, in addition to CO, is observed. Water formed in a significant amount during CO2 hydrogenation adversely affects the dehydration of methanol. In methanol synthesis at 240°C, the catalyst exhibits an insignificant activity in the case of using H2/CO and almost no activity in the case of H2/CO2. Data on CO and CO2 hydrogenation in the presence of ZnO/Al2O3 are consistent with the results for precipitated ZnO. In addition, at a pressure of 3 or 5 MPa and a temperature of 344 or 364°C, the content of oxygenates in the case of CO hydrogenation is 4–5 times higher than that in the case of CO2 hydrogenation. Analysis of the dependence of the relative selectivity for oxygenates on the contact time leads to the conclusion that, in the presence of zinc oxide, methanol is formed from both CO and CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Leonzio, G., J. CO 2 Util., 2018, vol. 27, p. 326.

  2. Busca, G., Heterogeneous Catalytic Materials. Solid State Chemistry, Surface Chemistry and Catalytic Behavior, Amsterdam: Elsevier, 2014, ch. 9, p. 463.

    Google Scholar 

  3. Tu, C., Nie, X., and Chen, J.G., ACS Catal., 2021, vol. 11, p. 3384.

    Article  CAS  Google Scholar 

  4. Zhang, X., Zhang, G., Liu, W., Yuan, F., Wang, J., Zhu, J., Jiang, X., Zhang, A., Ding, F., Song, C., and Guo, X., Appl. Catal., B, 2021, vol. 284, p. 119700.

    Article  CAS  Google Scholar 

  5. Ni, Y., Chen, Z., Fu, Y., Liu, Y., Zhu, W., and Liu, Z., Nat. Commun., 2018, vol. 9, p. 3457.

    Article  Google Scholar 

  6. Zhao, Y.-F., Rousseau, R., Li, J., and Mei, D., J. Phys. Chem. C, 2012, vol. 116, p. 15952.

    Article  CAS  Google Scholar 

  7. Tabatabaei, J., Sakakini, B.H., and Waugh, K.C., Catal. Lett., 2006, vol. 110, p. 77.

    Article  CAS  Google Scholar 

  8. Nadupalli, S., Repp, S., Weber, S., and Erdem, E., Nanoscale, 2021, vol. 13, p. 9160.

    Article  CAS  Google Scholar 

  9. Kim, W., Choi, M., and Yong, K., Sens. Actuators, B, 2015, vol. 209, p. 989.

    Article  CAS  Google Scholar 

  10. Liu, F., Wang, X., Chen, X., Song, X., Tian, J., and Cui, H., ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 24757.

    Article  CAS  Google Scholar 

  11. Wang, J., Xia, Y., Dong, Y., Chen, R., Xiang, L., and Komarneni, S., Appl. Catal., B, 2016, vol. 192, p. 8.

    Article  CAS  Google Scholar 

  12. Jiang, X., Ji, Y., Li, J., Zhu, Y., Kang, T., Zhong, Z., Su, F., and Xu, G., Mol. Catal., 2021, vol. 504, p. 111453.

    Article  CAS  Google Scholar 

  13. Joo, O.-S. and Jung, K.-D., Bull. Korean Chem. Soc., 2003, vol. 24, p. 86.

    Article  CAS  Google Scholar 

  14. Shavi, R., Ko, J., Cho, A., Han, J.W., and Seo, J.G., Appl. Catal., B, 2018, vol. 229, p. 237.

    Article  CAS  Google Scholar 

  15. Huang, W., Sun, W.Z., and Li, F., AIChE J., 2010, vol. 56, p. 1279.

    CAS  Google Scholar 

  16. Zhou, W., Kang, J., Cheng, K., He, S., Shi, J., Zhou, C., Zhang, Q., Chen, J., Peng, L., Chen, M., and Wang, Y., Angew. Chem. Int. Ed., 2018, vol. 57, p. 12012.

    Article  CAS  Google Scholar 

  17. Wang, T., Yang, C., Gao, P., Zhou, S., Li, S., Wang, H., and Sun, Y., Appl. Catal., B, 2021, vol. 286, p. 119929.

    Article  CAS  Google Scholar 

  18. Zhang, J., Zhang, M., Chen, S., Wang, X., Zhou, Z., Wu, Y., Zhang, T., Yang, G., Han, Y., and Tan, Y., Chem. Commun., 2019, vol. 55, p. 973.

    Article  CAS  Google Scholar 

  19. Zhang, X., Zhang, A., Jiang, X., Zhu, J., Liu, J., Li, J., Zhang, G., Song, C., and Guo, X., J. CO 2 Util., 2019, vol. 29, p. 140.

  20. Kipnis, M.A., Samokhin, P.V., Belostotskii, I.A., and Turkova, T.V., Catal. Ind., 2018, vol. 10, p. 97.

  21. Abdel-Mageed, A.M., Klyushin, A., Rezvani, A., Knop-Gericke, A., Schlögl, R., and Behm, R.J., Angew. Chem., Int. Ed., 2019, vol. 58, p. 10325.

    Article  CAS  Google Scholar 

  22. Chen, S., Abdel-Mageed, A.M., Hauble, A., Ishida, T., Murayama, T., Parlinska-Wojtan, M., and Behm, R.J., Appl. Catal., A, 2021, vol. 624, p. 118318.

  23. Catalyst Handbook, Twigg, M., Ed., Wolfe, 1989. 575 p.

    Google Scholar 

  24. Volnina, E.A. and Kipnis, M.A., Kinet. Catal., 2020, vol. 61, no. 1, p. 119.

    Article  CAS  Google Scholar 

  25. Kagan, Yu.B., Rozovskii, A.Ya., Lin, G.I., Slivinskii, E.V., Loktev, S.M., Liberov, L.G., and Bashkirov, A.N., Kinet. Katal., 1975, vol. 16, no. 3, p. 809.

    CAS  Google Scholar 

  26. Joo, O.-S., Jung, K.-D., Moon, I., Rozovskii, A.Ya., Lin, G.I., Han, S.-H., and Uhm, S.-J., Ind. Eng. Chem. Res., 1999, vol. 38, p. 1808.

    Article  CAS  Google Scholar 

  27. Vibhatavata, P., Borgard, J.-M., Tabarant, M., Bianchi, D., and Mansilla, C., Int. J. Hydrogen Energy, 2013, vol. 38, p. 6397.

    Article  CAS  Google Scholar 

  28. Anicic, B., Trop, P., and Goricanec, D., Energy, 2014, vol. 77, p. 279.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of the Center for collective use of Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences.

Funding

This work was supported by a grant from the Russian Science Foundation (project no. 17-73-30046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kipnis.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Abbreviations and notation: DME, dimethyl ether; DFT, density functional theory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kipnis, M.A., Samokhin, P.V., Volnina, E.A. et al. Features of Carbon Dioxide and Monoxide Hydrogenation in the Presence of ZnO/Al2O3 and ZnO. Kinet Catal 63, 292–303 (2022). https://doi.org/10.1134/S0023158422030041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158422030041

Keywords:

Navigation