Skip to main content
Log in

Size effects in catalysis by supported metal nanoparticles

  • Published:
Catalysis in Industry Aims and scope Submit manuscript

An Errata to this article was published on 01 June 2009

Abstract

This paper is concerned with the study of size effects in reactions of low-temperature CO oxidation on the catalysts Au/γ-Al2O3 and Au/δ-Al2O3 and complete oxidation of methane on the catalysts Pt/γ-Al2O3. For the synthesis of gold catalysts, four techniques have been applied: ionic adsorption, deposition-precipitation, chemical liquid-phase grafting, and decomposition of volatile gold complexes. Platinum catalysts have been prepared by aluminum oxide impregnation with aqueous solutions of H2[Pt(OH)6] that, depending on preparation conditions, contained mono- or oligonuclear hydroxocomplexes of platinum. Series of catalyst samples with a narrow size distribution of particles and a mean size variation from 0.5–1 to 20–25 nm have been prepared. The study of the catalytic properties of the prepared catalysts has shown that a decrease in mean size of supported metal particles leads to a sharp increase in specific catalytic activity in both systems. The activity maximum has been achieved for active component particles of 2–3 nm. A conclusion has been made that the application of nanosize catalysts is promising for the cleaning of air in closed rooms and vehicle exhaust gases from CO, for the utilization of methane, and for the obtaining of energy by the combustion of natural gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boudart, M., Aldag, A., Benson, J.E., et al., J. Catal., 1966, vol. 6, p. 92.

    Article  CAS  Google Scholar 

  2. Boudart, M., Adv. Catal., 1969, vol. 20, p. 153.

    Article  CAS  Google Scholar 

  3. Bukhtiyarov, V.I. and Slin’ko, M.G., Usp. Khim., 2001, vol. 70, p. 167.

    Google Scholar 

  4. Haruta, M., Yamada, N., Kobayashi, T., and Iijima, S., J. Catal., 1989, vol. 115, p. 301.

    Article  CAS  Google Scholar 

  5. Bamwenda, G.R., Tsubota, S., Nakamura, T., and Haruta, M., Catal. Lett., 1997, vol. 44, p. 83.

    Article  CAS  Google Scholar 

  6. Haruta, M. and Date, M., Appl. Catal., A, 2001, vol. 222, p. 427.

    Article  CAS  Google Scholar 

  7. Semyannikov, P.P., Moroz, B.L., and Trubin, S.V., Zh. Strukt. Khim., 2006, vol. 47, p. 473.

    Google Scholar 

  8. Anufrienko, V.F., Moroz, B.L., Larina, T.V., et al., Dokl. Akad. Nauk, 2007, vol. 413, nos. 4–6, p. 75 [Dokl. Phys. Chem. (Engl. Transl.), vol. 413, issue 2, p. 75].

    CAS  Google Scholar 

  9. Moroz, B.L. and Bukhtiyarov, V.I., Catal. Today (in press).

  10. Haruta, M., Tsubota, S., Kobayashi, T., et al., J. Catal., 1993, vol. 144, p. 175.

    Article  CAS  Google Scholar 

  11. Chen, M.S. and Goodman, D.W., Catal. Today, 2006, vol. 111, p. 22.

    Article  CAS  Google Scholar 

  12. Popova, N.M., Katalizatory ochistki vykhlopnykh gazov avtotransporta (Catalysts of Purification of Exhaust Gases of Automotive Transport), Alma-Ata: Nauka, 1987.

    Google Scholar 

  13. Kalabina, L.V., Ukr. Khim. Zh., 1983, vol. 49, p. 342.

    CAS  Google Scholar 

  14. Nabivanets, B.I., Kalabina, L.V., and Kudritskaya, L.N., Zh. Neorg. Khim., 1971, vol. 16, p. 3281.

    CAS  Google Scholar 

  15. Dou, D., Liu, D.-J., Williamson, W.B., et al., Appl. Catal., B, 2001, vol. 30, p. 11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Bukhtiyarov, B.L. Moroz, N.E. Bekk, I.P. Prosvirin, 2009, published in Kataliz v Promyshlennosti.

An erratum to this article can be found online at http://dx.doi.org/10.1134/S2070050409020147

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukhtiyarov, V.I., Moroz, B.L., Bekk, N.E. et al. Size effects in catalysis by supported metal nanoparticles. Catal. Ind. 1, 17–28 (2009). https://doi.org/10.1134/S2070050409010036

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050409010036

Keywords

Navigation