Skip to main content
Log in

Computation of the Evolution of Tollmien–Schlichting Waves Based on Global Stability Analysis

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

A computational methodology is presented for calculating the spatial evolution of Tollmien–Schlichting (T–S) waves and their amplitude growth-rate factor in substantially nonparallel compressible flows, based on a global stability analysis of stationary solutions of the full Navier–Stokes (N–S) equations. Three stages of this methodology (obtaining a stationary solution, as well as carrying out a global stability analysis and its postprocessing) are described, and the results are presented of its validation based on the comparison of the results of calculating the characteristics of T–S waves on a flat plate with the corresponding results of the classical stability theory in the parallel approximation. An example of calculating the flow around a plate with a rectangular cavity is presented to illustrate the possibility of applying the proposed methodology to nonparallel flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. A. V. Boiko, A. V. Dovgal, G. R. Grek, and V. V. Kozlov, Physics of Transitional Shear Flows: Instability and Laminar-Turbulent Transition in Incompressible Near-Wall Shear Layers, Fluid Mechanics and Its Applications, Vol. 98 (Springer, Dordrecht, 2012). https://doi.org/10.1007/978-94-007-2498-3

  2. P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows, Applied Mathematical Sciences, Vol. 142 (Springer, New York, 2011). https://doi.org/10.1007/978-1-4613-0185-1

  3. W. Tollmien, “Über die Entstehung der Turbulenz,” Nachr. von Ges. Wissenschaften zu Göttingen, Mathematisch-Phys. Klasse 1929, 21–44 (1929).

    Google Scholar 

  4. G. B. Schubauer and H. K. Skramstad, “Laminar boundary-layer oscillations and stability of laminar flow,” J. Aeronaut. Sci. 14, 69–78 (1947). https://doi.org/10.2514/8.1267

    Article  Google Scholar 

  5. V. Theofilis, “Global linear instability,” Annu. Rev. Fluid Mech. 43, 319–352 (2011). https://doi.org/10.1146/annurev-fluid-122109-160705

    Article  MathSciNet  Google Scholar 

  6. U. Ehrenstein and F. Gallaire, “On two-dimensional temporal modes in spatially evolving open flows: the flat-plate boundary layer,” J. Fluid Mech. 536, 209–218 (2005). https://doi.org/10.1017/s0022112005005112

    Article  MathSciNet  Google Scholar 

  7. E. Åkervik, U. Ehrenstein, F. Gallaire, and D. S. Henningson, “Global two-dimensional stability measures of the flat plate boundary-layer flow,” Eur. J. Mech. - B/Fluids 27, 501–513 (2008). https://doi.org/10.1016/j.euromechflu.2007.09.004

    Article  MathSciNet  Google Scholar 

  8. R. Bhoraniya and V. Narayanan, “Global stability analysis of spatially developing boundary layer: Effect of streamwise pressure gradients,” Fluid Dyn. 54, 821–834 (2019). https://doi.org/10.1134/s0015462819060028

    Article  MathSciNet  Google Scholar 

  9. R. Bhoraniya and V. Narayanan, “Global stability analysis of the axisymmetric boundary layer: Effect of axisymmetric forebody shapes on the helical global modes,” Pramana 95, 109 (2021). https://doi.org/10.1007/s12043-021-02147-4

    Article  Google Scholar 

  10. J. Garicano-Mena, E. Ferrer, S. Sanvido, and E. Valero, “A stability analysis of the compressible boundary layer flow over indented surfaces,” Comput. Fluids 160, 14–25 (2018). https://doi.org/10.1016/j.compfluid.2017.10.011

    Article  MathSciNet  Google Scholar 

  11. M. Mathias and M. F. Medeiros, “Global instability analysis of a boundary layer flow over a small cavity,” in AIAA Aviation 2019 Forum, Dallas, Texas, 2019 (American Institute of Aeronautics and Astronautics, 2019), p. 2019-3535. https://doi.org/10.2514/6.2019-3535

  12. M. S. Kuester, “Growth of TollmieN–Schlichting Waves over Three-Dimensional Roughness,” in AIAA Scitech 2020 Forum, Orlando, Fla., 2020 (American Institute of Aeronautics and Astronautics, 2020). https://doi.org/10.2514/6.2020-1580

  13. M. Shur, M. Strelets, and A. Travin, “High-order implicit multi-block Navier–Stokes code: Ten-year experience of application to RANS/DES/LES/DNS of turbulence, invited lecture,” in 7th Symp. on Overset Composite Grids and Solution Technology (Huntington Beach, Calif., 2004). https://cfd.spbstu.ru/agarbaruk/doc/NTS_code.pdf.

  14. P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes,” J. Comput. Phys. 43, 357–372 (1981). https://doi.org/10.1016/0021-9991(81)90128-5

    Article  MathSciNet  Google Scholar 

  15. J. D. Crouch, A. V. Garbaruk, and D. Magidov, “Predicting the onset of flow unsteadiness based on global instability,” J. Comput. Phys. 224, 924–940 (2007). https://doi.org/10.1016/j.jcp.2006.10.035

    Article  MathSciNet  Google Scholar 

  16. J. D. Crouch, A. Garbaruk, and M. Strelets, “Global instability in the onset of transonic-wing buffet,” J. Fluid Mech. 881, 3–22 (2019). https://doi.org/10.1017/jfm.2019.748

    Article  MathSciNet  Google Scholar 

  17. S. Timme, “Global instability of wing shock buffet,” arXiv Preprint (2018). https://doi.org/10.48550/arXiv.1806.07299

  18. S. Timme, “Global shock buffet instability on NASA common research model,” in AIAA Scitech 2019 Forum, San Diego, Calif., 2019 (American Institute of Aeronautics and Astronautics, 2019), p. 2019-0037. https://doi.org/10.2514/6.2019-0037

  19. R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (Soc. for Industrial and Applied Mathematics, Philadelphia, 1988). https://doi.org/10.2514/6.2019-0037

    Book  Google Scholar 

  20. D. Golub and C. Van Loun, Matrix Computations, 4th ed. (The John Hopkins Univ. Press, Baltimore, 1989).

    Google Scholar 

  21. W. Yang and I. Zurbenko, “Kolmogorov–Zurbenko filters,” WIREs Comput. Stat. 2, 340–351 (2010). https://doi.org/10.1002/wics.71

    Article  Google Scholar 

  22. J. D. Crouch and V. S. Kosorygin, “Surface step effects on boundary-layer transition dominated by Tollmien–Schlichting instability,” AIAA J. 58, 2943–2950 (2020). https://doi.org/10.2514/1.j058518

    Article  Google Scholar 

  23. Y. X. Wang and M. Gaster, “Effect of surface steps on boundary layer transition,” Exp. Fluids 39, 679–686 (2005). https://doi.org/10.1007/s00348-005-1011-7

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 22-11-00041). All the calculations were performed on the high-performance Tornado cluster of Peter the Great St. Petersburg Polytechnic University (http://www.spbstu.ru).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kh. Strelets.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, K.V., Garbaruk, A.V., Golubkov, V.D. et al. Computation of the Evolution of Tollmien–Schlichting Waves Based on Global Stability Analysis. Math Models Comput Simul 16, 29–38 (2024). https://doi.org/10.1134/S2070048224010034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048224010034

Keywords:

Navigation