Skip to main content
Log in

Global stability analysis of the axisymmetric boundary layer: Effect of axisymmetric forebody shapes on the helical global modes

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The effects of different axisymmetric forebody shapes have been studied on the non-axisymmetric (helical) global modes of the boundary layer developed on a circular cylinder. Sharp cone, ellipsoid and paraboloid shapes have been considered with the fineness ratio (FR) of 2.5, 5.0 and 7.5. The base flow is in line with the cylinder’s axis at the inflow boundary, and hence the base flow is axisymmetric. The boundary layer has developed from the tip of the forebody where a highly favourable pressure gradient exists, and it depends on the sharp edge of the forebody’s geometric shape. However, the pressure gradient then remains constant on the cylindrical surface of the main body. Thus, the boundary layer developed on the forebody and main body (cylinder) is non-parallel, non-similar and axisymmetric. The governing equations for the stability analysis of the small disturbances have been derived in the cylindrical polar coordinates. The spectral collocation method with Chebyshev polynomials has been used to discretise the stability equations. An eigenvalue problem has been formulated from the discretised stability equations along with the appropriate boundary conditions. The numerical solution of the eigenvalue problem was done using Arnoldi’s iterative algorithm. The global temporal modes have been computed for helical modes \(N = 1\), 2, 3, 4 and 5 for Reynolds number \(Re = 2000\), 4000 and 10000. The spatial and temporal structures of the least stable global modes have been studied for different Reynolds numbers and helical modes. The global modes with ellipsoid were found the least stable while that of the sharp cone were found the most stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J S Parsons and R E Goodson, Technical report H, Automatic control center, School of Mechanical Engineering (Purdue University, 1972)

  2. V Narayanan and R Govindarajan, Pramana – J. Phys. 64(3), 323 (2005)

  3. M Casarella, T C Shen and B E Bowers, Ship Aoustic Dept. R & D Report 77 (1977)

  4. R L James, B H Navran and R A Rozenddal, NASA CR-166051 (1984)

  5. B J Holmes, C J Obara and L P Yip, NASA TP-2256 (1984)

  6. B H Carmichael, Underwater missile propulsion (Compass Publications, 1966)

  7. V Theofilis, Prog. Aerosp. Sci. 39, 249 (2003)

    Article  Google Scholar 

  8. F Alizard and J C Robinet, Phys. Fluid 19, 114105 (2007)

    Article  ADS  Google Scholar 

  9. E Akervik, U Ehrenstein, F Gallaire and D S Henningson, Eur. J. Mech. B/Fluids 27, 501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. G N V Rao, J. Appl. Math. Phys. 25, 63 (1974)

    Google Scholar 

  11. O R Tutty and W G Price, Phys. Fluid 14, 628 (2002)

    Article  ADS  Google Scholar 

  12. R Bhoraniya and V Narayanan, J. Phys.: Conf. Ser. 822, 012018 (2017)

    Google Scholar 

  13. R Bhoraniya and V Narayanan, Phys. Rev. Fluids 2, 063901 (2017)

    Article  Google Scholar 

  14. R Bhoraniya and V Narayanan, Theor. Comput. Fluid Dyn. 32, 425 (2018)

    Article  MathSciNet  Google Scholar 

  15. R Bhoraniya and V Narayanan, Pramana – J. Phys. 39(5), 93 (2019)

  16. U Ehrenstein and F Gallaire, J. Fluid Mech. 536, 209 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. G Swaminathan, K Shau, A Sameen and R Govindarajan, Theor. Compt. Fluid Dyn. 25, 53 (2011)

    Google Scholar 

  18. R Bhoraniya and V Narayanan, Fluid Dyn. 54(5), 93 (2019)

    Google Scholar 

  19. M Gaster, J. Fluid Mech. 22, 433 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  20. A Michalke, J. Fluid Mech. 23, 521 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  21. C K W Tam, J. Fluid Mech. 89, 357 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  22. J M Chomaz, P Huerre and L G Redekopp, Proc. Symp. Turbul. Shear flows, 6th, Toulouse, Fr. 3.2, 1 (1987)

  23. J M Chomaz, P Huerre and L G Redekopp, Phys. Rev. Lett. 60, 25 (1988)

    Article  ADS  Google Scholar 

  24. R T Pierrehumbert, J. Atmos. Sci. 62, 2141 (1984)

    Article  ADS  Google Scholar 

  25. W Koch, J. Sound Vib. 99, 53 (1985)

    Article  ADS  Google Scholar 

  26. P A Monkewitz, D W Bechert, B Barsikow and B Lehmann, J. Fluid Mech. 31, 999 (1988)

    Google Scholar 

  27. P Huerre and P A Monkwwitz, Annu. Rev. Fluid Mech. 22, 473 (1990)

    Article  ADS  Google Scholar 

  28. R S Lin and M R Malik, J. Fluid Mech. 311, 239 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  29. R S Lin and M R Malik, J. Fluid Mech. 333, 125 (1997)

    Article  ADS  Google Scholar 

  30. V Theofilis, P W Duck and J Owen, J. Fluid Mech. 505, 249 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  31. V Theofilis, Theor. Comput. Fluid Dyn. 31, 623 (2017)

    Article  Google Scholar 

  32. M R Malik, J. Comput. Phys. 86(2), 372 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Bhoraniya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhoraniya, R., Narayanan, V. Global stability analysis of the axisymmetric boundary layer: Effect of axisymmetric forebody shapes on the helical global modes. Pramana - J Phys 95, 109 (2021). https://doi.org/10.1007/s12043-021-02147-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02147-4

Keyword

PACS Nos

Navigation