Skip to main content
Log in

Extensive Numerical Simulation of a Magnetically Actuated Satellite’s Rotation around the Direction toward the Sun with Data from the Solar Sensors Only

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

Numerical simulation of various stabilization scenarios of the motion a magnetically actuated satellite in the direction toward the Sun is performed. The satellite is equipped with solar sensors as the only attitude information source. The control algorithms are derived to achieve unambiguous stabilization in the direction toward the Sun while maintaining rotation around this direction despite the inability to identify this rotation using solar sensors. Extensive numerical simulation of the satellite’s motion with different configurations of the orbit and inertia distribution justifies the algorithm’s applicability and reveals its performance characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. C. Hughes, Spacecraft Attitude Dynamics (Dover, New York, 2004).

    Google Scholar 

  2. G. Avanzini, E. L. de Angelis, and F. Giulietti, “Spin-axis pointing of a magnetically actuated spacecraft,” Acta Astronaut. 94, 493–501 (2014).

    Article  Google Scholar 

  3. C. Chasset, S. Berge, et al., “3-axis magnetic control with multiple attitude profile capabilities in the PRISMA mission,” in 57th Int. Astronautical Congress, Valencia, Spain, October 2006, p. IAC-06-C1.2.3. https://doi.org/10.2514/6.IAC-06-C1.2.03

  4. A. de Ruiter, “A fault-tolerant magnetic spin stabilizing controller for the JC2Sat-FF mission,” Acta Astronaut. 68, 160–171 (2011). https://doi.org/10.1016/j.actaastro.2010.07.012

    Article  Google Scholar 

  5. H. You, Y.-W. Jan, and J.-R. Tsai, “Sun pointing attitude control with magnetic torquers only,” in 57th Int. Astronautical Congress, Valencia, Spain, October 2006, p. IAC-06-C1.2.01. https://doi.org/10.2514/6.IAC-06-C1.2.01

  6. J. Kim and K. Worrall, “Sun tracking controller for UKube-1 using magnetic torquer only,” IFAC Proc. 46, 541–546 (2013). https://doi.org/10.3182/20130902-5-DE-2040.00126

  7. A. I. Ignatov and V. V. Sazonov, “Stabilization of the solar orientation mode of an artificial Earth satellite by an electromagnetic control system,” Cosmic Res. 56, 388–399 (2018). https://doi.org/10.1134/S0010952518050015

    Article  Google Scholar 

  8. A. Colagrossi and M. Lavagna, “A spacecraft attitude determination and control algorithm for solar arrays pointing leveraging Sun angle and angular rates measurements,” Algorithms 15, 29 (2022). https://doi.org/10.3390/a15020029

    Article  Google Scholar 

  9. J. Cubas, A. Farrahi, and S. Pindado, “Magnetic attitude control for satellites in polar or sun-synchronous orbits,” J. Guid. Control Dyn. 38, 1947–1958 (2015). https://doi.org/10.2514/1.G000751

    Article  Google Scholar 

  10. A. C. Stickler and K. T. Alfriend, “Elementary magnetic attitude control system,” J. Spacecr. Rockets 13, 282–287 (1976). https://doi.org/10.2514/3.57089

    Article  Google Scholar 

  11. S. O. Karpenko, M. Yu. Ovchinnikov, D. S. Roldugin, et al., “One-axis attitude of arbitrary satellite using magnetorquers only,” Cosmic Res. 51, 478–484 (2013). https://doi.org/10.1134/S0010952513060087

    Article  Google Scholar 

  12. L. M. Zelenyi, A. V. Gurevich, et al., “The academic Chibis-M microsatellite,” Cosmic Res. 52, 87–98 (2014). https://doi.org/10.1134/S0010952514010110

    Article  Google Scholar 

  13. M. Yu. Ovchinnikov, D. S. Roldugin, et al., “New one-axis one-sensor magnetic attitude control theoretical and in-flight performance,” Acta Astronaut. 105, 12–16 (2014). https://doi.org/10.1016/j.actaastro.2014.08.017

    Article  Google Scholar 

  14. D. S. Roldugin, S. S. Tkachev, and M. Yu. Ovchinnikov, “Satellite angular motion under the action of SDOT magnetic one axis Sun acquisition algorithm,” Cosmic Res. 59, 529–536 (2021). https://doi.org/10.1134/S0010952521100014

    Article  Google Scholar 

  15. P. Alken, E. Thébault, et al., “International Geomagnetic Reference Field: The thirteenth generation,” Earth Planets Space 73, 49 (2021). https://doi.org/10.1186/s40623-020-01288-x

    Article  Google Scholar 

  16. D. Roldugin, S. Tkachev, and M. Ovchinnikov, “Asymptotic motion of a satellite under the action of Sdot magnetic attitude control,” Aerospace 9, 639 (2022). https://doi.org/10.3390/aerospace9110639

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 22-71-10009, https://rscf.ru/project/22-71-10009/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Roldugin.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roldugin, D.S. Extensive Numerical Simulation of a Magnetically Actuated Satellite’s Rotation around the Direction toward the Sun with Data from the Solar Sensors Only. Math Models Comput Simul 15, 792–801 (2023). https://doi.org/10.1134/S2070048223050083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048223050083

Keywords:

Navigation