Skip to main content
Log in

Influence Study of Perturbations on Inclined Propagation of Reaction Fronts

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

In this work, we study the influence of vibrations and quasi-periodic vibrations on the propagation of reaction fronts where the monomer is liquid and the polymer is solid and in the case where the experimental tube is subjected to a variable inclination. The mathematical model includes the heat equation, the concentration equation and the Navier–Stockes equation under the Boussinesq approximation. As the reaction zone is narrow, the model is seen as a singular perturbation problem, we perform an asymptotic analysis as proposed by Zeldovich and Frank-Kamenetskii to reduce the problem to an interface problem. We then perform a linear stability analysis to study the interface problem. The linearized problem is solved numerically using a multiquadric radial basis function (MQ-RBF) method to find the neutral convective stability limit. This will allow us to deduce the influence of each physical parameter of the problem on this stability, in particular the different vibrations and the angle of inclination of the experimental tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. P. M. Goldfeder, V. A. Volpert, V. M. Ilyashenko, A. M. Khan, J. A. Pojman, and S. E. Solovyov, “Mathematical modeling of free-radical polymerization fronts,” J. Phys. Chem. B 101 (18), 3474–3482 (1997). https://doi.org/10.1021/jp962150v

    Article  Google Scholar 

  2. L. M. Dean, Q. Wu, O. Alshangiti, J. S. Moore, and N. R. Sottos, “Rapid synthesis of elastomers and thermosets with tunable thermomechanical properties,” ACS Macro Lett. 9 (6), 819–824 (2020). https://doi.org/10.1021/acsmacrolett.0c00233

    Article  Google Scholar 

  3. Q. Li, H.-X. Shen, C. Liu, C.-F. Wang, L. Zhu, and S. Chen, “Advances in frontal polymerization strategy: From fundamentals to applications,” Prog. Polym. Sci. 127, 101514 (2022). https://doi.org/10.1016/j.progpolymsci.2022.101514

    Article  Google Scholar 

  4. G. I. Barenblatt, Ya. B. Zeldovich, and A. G. Istratov, “On diffusive-thermal stability of a laminar flame,” Prikl. Mekh. Tekh. Fiz., No. 4, 21–26 (1962).

  5. A. P. Aldushin and S. G. Kasparyan, “Thermodiffusional instability of a combustion front,” Sov. Phys. Dokl. 24, 29–31 (1979).

    Google Scholar 

  6. S. B. Margolis, H. G. Kaper, G. K. Leaf, and B. J. Matkowsky, “Bifurcation of pulsating and spinning reaction fronts in condensed two-phase combustion,” Combust. Sci. Technol. 43 (3–4), 127–165 (1985). https://doi.org/10.1080/00102208508947001

    Article  Google Scholar 

  7. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1987).

    Google Scholar 

  8. Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions (Consultants Bureau, Plenum Press, New York, 1985).

    Book  Google Scholar 

  9. A. Istratov and V. B. Librovich, “Effect of the transfer processes on stability of a planar flame front,” J. Appl. Math. Mech. 30, 451–466 (1966).

    Article  MATH  Google Scholar 

  10. H. Rouah, L. Salhi and A. Taik, “Influence of some critical parameters on the stability of reaction fronts in liquid medium,” Int. J. Modell., Identif. Control. 36 (1), 42–56 (2020). https://doi.org/10.1504/IJMIC.2020.10038196

    Article  Google Scholar 

  11. L. Salhi, H. Rouah and A. Taik, “Influence of natural convection on stability of an inclined front propagation,” Commun. Fac. Sci. Univ. Ankara Ser. A1 Math. Stat. 68 (1), 1097–1113 (2019). https://doi.org/10.31801/cfsuasmas.508199

    Article  MATH  Google Scholar 

  12. M. Garbey, A. Taik, and V. Volpert, “Influence of natural convection on stability of reaction fronts in liquids,” Quart. Appl. Math. 53, 1–35 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Allali, V. Volpert, and J. A. Pojman, “Influence of vibrations on convective instability of polymerization fronts,” J. Eng. Math. 41, 13–31 (2001). https://doi.org/10.1023/A:1011878929608

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Aatif, K. Allali, and El K. Karouni, “Influence of vibrations on convective instability of reaction fronts in porous media,” Math. Model. Nat. Phenom. 5 (5), 123–137 (2010). https://doi.org/10.1051/mmnp/20105508

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Allali, M. Belhaq, and K. El Karouni, “Influence of quasi-periodic gravitational modulation on convective instability of reaction fronts in porous media,” Commun. Nonlinear Sci. Numer. Simul. 17 (4), 1588–1596 (2012). https://doi.org/10.1016/j.cnsns.2011.09.015

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Allali, S. Assiyad, and M. Belhaq, “Convection of polymerization front with solid product under quasi-periodic gravitational modulation,” Nonlinear Dyn. Syst. Theory 14 (4), 323–334 (2014).

    MathSciNet  MATH  Google Scholar 

  17. Ya. B. Zeldovich, D. A. Frank-Kamenetskii, “A theory of thermal propagation of flame,” Acta Physicochim. USSR 9 (3), 341–350 (1938).

    Google Scholar 

  18. M. Bazile Jr., H. A. Nichols, J. A. Pojman, and V. Volpert, “Effect of orientation on thermoset frontal polymerization,” J. Polym. Sci. Part A: Polym. Chem. 40 (20), 3504–3508 (2002). https://doi.org/10.1002/pola.10447

    Article  Google Scholar 

  19. M. A. Mujeebu, M. Z. Abdullah, M. A. Bakar, A. A. Mohamad, R. M. N. Muhad, and M. K. Abdullah, “Combustion in porous media and its applications – A comprehensive survey,” J. Environ. Manage. 90 (8), 2287–2312 (2009). https://doi.org/10.1016/j.jenvman.2008.10.009

    Article  Google Scholar 

  20. M. Garbey, A. Taik, V. Volpert, “Linear stability analysis of reaction fronts in liquids,” Q. Appl. Math. 54, 225–247 (1996). https://doi.org/10.1090/qam/1388014

    Article  MathSciNet  MATH  Google Scholar 

  21. A. H. Nayfeh, Perturbation Methods (Wiley, New York, 1973).

    MATH  Google Scholar 

  22. D. A. Schult, “Matched asymptotic expansions and the closure problem for combustion waves,” SIAM J. Appl. Math. 60 (1), 136–155 (1999). https://doi.org/10.1137/S0036139998337152

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Hamaidi, A. Naji, and A. Taik, “Solving parabolic and hyperbolic equations with variable coefficients using space-time localized radial basis function collocation method,” Modell. Simul. Eng. 2021, 6688806 (2021). https://doi.org/10.1155/2021/6688806

    Article  Google Scholar 

  24. R. Franke, A Critical Comparison of Some Methods for Interpolation of Scattered Data, Tech. Report NPS-53-79-003 (Naval Postgraduate School, Monterey, CA, 1979).

  25. G.E. Fasshauer and J. G. Zhang, “On choosing “optimal” shape parameters for RBF Approximation,” Numer. Algorithms 45, 345–368 (2007). https://doi.org/10.1007/s11075-007-9072-8

    Article  MathSciNet  MATH  Google Scholar 

  26. M. D. Buhmann, Radial Basis Functions: Theory and Implementations (Cambridge Univ. Press, Cambridge, 2003).

    Book  MATH  Google Scholar 

  27. G. E. Fasshauer, Meshfree Approximation Methods with MATLAB (World Scientific, Singapore, 2007).

    Book  MATH  Google Scholar 

  28. F. Benkhaldoun, A. Halassi, D. Ouazar, M. Seaid, and A. Taik, “A stabilized meshless method for time-dependent convection-dominated flow problems,” Math. Comput. Simul. 137, 159–176 (2017). https://doi.org/10.1016/j.matcom.2016.11.003

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Alhuri, F. Benkhaldoun, D. Ouazar, M. Seaid, and A. Taik, “A meshless method for numerical simulation of depth-averaged turbulence flows using a k–\(~\varepsilon \) model,” Int. J. Numer. Methods Fluids 80 (1), 3–22 (2016). https://doi.org/10.1002/fld.406710.1002/fld.4067

    Article  MathSciNet  Google Scholar 

  30. K. Allali, Y. Joundy, A. Taik, and V. Volpert, “Dynamics of convective thermal explosion in porous media,” Int. J. Bifurcation Chaos. 30 (6), 2050081 (2020). https://doi.org/10.1142/S0218127420500819

    Article  MathSciNet  MATH  Google Scholar 

  31. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Pergamon Press, New York, 1966).

    MATH  Google Scholar 

  32. H. Han, J. Lu, and W. Bao, “A discrete artificial boundary condition for steady incompressible viscous flows in a no-slip channel using a fast iterative method,” J. Comput. Phys. 114 (2), 201–208 (1994). https://doi.org/10.1006/jcph.1994.1160

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Bowden, M. Garbey, V. M. Ilyashenko, J. A. Pojman, S. E. Solovyov, A. Taik, and V. A. Volpert, “Effect of convection on a propagating front with a solid product: comparison of theory and experiments,” J. Phys. Chem. B 101 (4), 678–686 (1997). https://doi.org/10.1021/jp962354b

    Article  Google Scholar 

  34. J.-L. Battaglia, A. Kusiak, and C. Pradère, Introduction aux Transferts Thermiques (Dunod, Paris, 2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Rouah.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joundy, Y., Rouah, H. & Taik, A. Influence Study of Perturbations on Inclined Propagation of Reaction Fronts. Math Models Comput Simul 15, 574–589 (2023). https://doi.org/10.1134/S2070048223030195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048223030195

Keywords:

Navigation