Skip to main content
Log in

Thermoelastic deformations in graphene and analogous two-dimensional materials

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

Using the Duhamel–Neumann equations, we consider the stationary heat-loading problem of a bulk specimen of a two-dimensional material (like grapheme) as an approximation of small elastic deformations. We present a numerical method for solving the heat-loading problem of a specimen of a complex shape with the use of a Friedrichs-monotonic finite-difference scheme on chaotic grids in a multiply connected integration domain. Then we demonstrate the results of the computational experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov et al., Nature, No. 438, 192 (2005).

    Article  Google Scholar 

  2. A. Kara, C. Léandri, M. E. Dávila, P. de Padova, B. Ealet, H. Oughaddou, B. Aufray, and G. le Lay, “Physics of silicene stripes,” arXiv:0811.2611 (2008).

    Google Scholar 

  3. R. R. Nair, W. C. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson, H. M. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, et al., “Fluorographene: a twodimensional counterpart of teflon,” arXiv:1006.3016.

  4. http://mipt.ru/NIU/publications/video.html.

  5. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1982; Pergamon Press, New York, 1986).

    Google Scholar 

  6. W. Nowacki, Theory of Elasticity (PWN, Warsaw, 1970; Mir, Moscow, 1970).

  7. V. Z. Parton and P. I. Perlin, Mathematical Methods of the Theory of Elasticity (Nauka, Moscow, 1981; Mir, Moscow, 1984).

    MATH  Google Scholar 

  8. A. M. Krivtsov, Elastic Properties of One-Atomic and Two-Atomic Crystals, The School-Book (Politekh. Univ., St. Petersburg, 2009) [in Russian].

    Google Scholar 

  9. O. L. Blakslee, D. G. Procto, and E. J. Seldin, “Elastic constants of compression - annealed pyrolytic graphite,” J. Appl. Phys. 41, 3373–3389 (1970).

    Article  Google Scholar 

  10. I. E. Berinskii, N. G. Dvas, A. M. Krivtsov, et al., Theoretical Mechanics. Elastic and Thermal Properties of Ideal One-Atomic and Two-Atomic Crystals, The School-Book (Politekh. Univ., St. Petersburg, 2009), p. 143 [in Russian].

    Google Scholar 

  11. E. I. Zhmurikov, I. V. Savchenko, S. V. Stankus, and L. Tecchio, “Measurements of thermophysical properties of graphite composites for neutron target converter,” Preprint No. 27 (Budker Inst. Nucl. Phys. Siberian Branch of RAS, Novosibirsk, 2010).

    Google Scholar 

  12. S. Yu. Davydov, “On the force constants of graphene,” Phys. Solid State 52, 1947 (2010).

    Article  Google Scholar 

  13. M. Topsakal and S. Ciraci, “Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: a first-principles density-functional theory study,” Phys. Rev. 81, 02410 (2010).

    Google Scholar 

  14. A. S. Kholodov, “Monotonic difference schemes on irregular grids for elliptic equations in a region with many disconnected boundaries,” Mat. Model. 3 (9), 104–113 (1991).

    MathSciNet  MATH  Google Scholar 

  15. A. S. Kholodov, “Monotonic difference schemes on irregular grids for elliptic equations in a region with many disconnected boundaries,” Math. Model. Comput. Simul. 3 (9), 3–11 (1991).

    MathSciNet  Google Scholar 

  16. A. A. Samarskii and E. S. Nikolaev, Methods for the Solution of Grid Equations (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  17. A. S. Kholodov and A. I. Lobanov, “Computational experiment in ecology and medicine: elliptic problems,” Phystech J. 1 (2), 3–11 (1994).

    Google Scholar 

  18. O. M. Belotserkovskii and A. S. Kholodov, “Majorizing schemes on unstructured grids in the space of indeterminate coefficients,” Comput. Math. Math. Phys. 39, 1730–1747 (1999).

    MathSciNet  MATH  Google Scholar 

  19. A. A. Batischeva, O. V. Batischev, A. S. Kholodov, S. I. Krasheninnikov, and D. Sigmar, “Unstructured adaptive grid and grid-free methods for the edge plasmas,” in Proceedings of the 16th International Conference on the Numerical Simulation of Plasmas, Santa Barbara, CA, 1998, pp. 248–251.

    Google Scholar 

  20. A. A. Batischeva, O. V. Batischev, and A. S. Kholodov, “Unstructured adaptive grid and grid-free methods for the edge plasma fluid simulations,” J. Plasma Phys. 61, 701–722 (1999).

    Article  Google Scholar 

  21. A. E. Evdokimov and A. C. Kholodov, “Quasi-stationary spatially distributed model of closed circulatory system,” in Computer Models and Medicine Progress (Nauka, Moscow, 2001), pp. 164–193 [in Russian].

    Google Scholar 

  22. S. S. Simakov, A. S. Kholodov, A. V. Evdokimov, and Y. F. Kholodov, “Matter transport simulations using 2D model of peripheral circulation coupled with the model of large vessels,” in Proceedings of the 2nd International Conference on Computational Bioengineering, Lisbon, Portugal, Sept. 14–16, 2005, Vol. 1, pp. 479–490.

    Google Scholar 

  23. S. S. Simakov, A. S. Kholodov, A. V. Evdokimov, and Ia. A. Kholodov, “Numerical simulation of cardiovascular diseases and global matter transport,” in Proceedings of the International Conference on Advanced Information and Telemedicine Technologies for Health AITTH’2005, Minsk, Belarus, Nov. 8–10, 2005, Vol. 2, pp. 188–192.

    Google Scholar 

  24. S. S. Simakov, A. S. Kholodov, Ia. A. Kholodov, et al., “Global dynamical model of the cardiovascular system,” in Proceedings of the 3rd European Conference on Computational Mechanics, Solids, Structures and Coupled Problems in Engineering, Lisbon, Portugal, 2006, Ed. by C. A. Mota Soares et al. (Springer, 2006), pp. 1464.1–1464.9.

    Google Scholar 

  25. S. S. Simakov, A. S. Kholodov, Ia. A. Kholodov, and K. M. Perfilov, “Heart valve dynamics in the model of global circulation,” in Proceedings of the 3rd Asian Pacific Congress on Computational Mechanics APCOM’07, Kyoto, Japan, Dec. 3–6, 2007, pp. 286718.1–286718.7.

    Google Scholar 

  26. A. E. Evdokimov, A. S. Kholodov, and S. S. Simakov, “Calculation methods of global blood circulation in the human body using a heterogeneous computing models,” in Medicine in the Mirror of Informatics, Ed. by O. M. Belotserkovskii and A. S. Kholodov (Nauka, Moscow, 2008), pp. 76–110 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kholodov.

Additional information

Original Russian Text © A.S. Kholodov, 2016, published in Matematicheskoe Modelirovanie, 2016, Vol. 28, No. 2, pp. 40–52.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kholodov, A.S. Thermoelastic deformations in graphene and analogous two-dimensional materials. Math Models Comput Simul 8, 513–522 (2016). https://doi.org/10.1134/S2070048216050100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048216050100

Keywords

Navigation