Skip to main content
Log in

On Fokker-Planck model for the Boltzmann collision integral at the moderate Knudsen numbers

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

Approximate coefficients have been obtained in an explicit form for the Fokker-Planck equation in the phase space for modeling a hard-sphere gas at the transition (from the kinetic to macroscopic description) Knudsen numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Cercignani, Theory and Application of the Boltzmann Equation (Edinbugrh, Scottish Academic, 1975; Mir, Moscow, 1978).

    MATH  Google Scholar 

  2. C. Cercignani, Rarefied Gas Dynamics (Cambridge University Press, 2000).

  3. G. A. Bird, Molecular Gas Dynamics (Clarendon Press, Oxford, 1976; Mir, Moscow, 1981).

    Google Scholar 

  4. B. N. Chetverushkin, Kinetically Matched Schemes in Gas Dynamics (Izd-vo Mos. un-ta, Moscow, 1999) [in Russian].

    Google Scholar 

  5. N. B. Maslova, Nonlinear Evolution Equations. Kinetic Approach (World Scientific Publishing Co. Pte. Ltd., 1993).

  6. L. D. Landau, “Kinetic Equation in the Case of Coulomb Interaction,” ZhETF 7(2), 203 (1937).

    Google Scholar 

  7. J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Processes,” J. Chem. Phys. 14(3), 180 (1946).

    Article  Google Scholar 

  8. S. Chandrasekhar, “Stochastic Problems in Physics and Astronomy,” Rev. Modern. Phys. 15(1), 1 (1943).

    Article  MATH  MathSciNet  Google Scholar 

  9. B. A. Trubnikov, “Particle Collision in Totally Ionized Plasma,” in Problems of Plasma Theory (Gosatomoizdat, Moscow, 1963), issue 1, pp. 98–182 [in Russian].

    Google Scholar 

  10. S. G. Rautin, “Diffusion Approximation in the Problem on Particles Migration in Gas,” Uspekhi fizicheskikh nauk 161(11), 151 (1991).

    Google Scholar 

  11. Yu. L. Klimontovich, “On Necessity and Possibility of Integrated Description of Kinetic and Hydrodynamic Processes,” Teor. i matem. fizika 92(2), 312 (1992).

    MATH  MathSciNet  Google Scholar 

  12. A. A. Arsen’ev and O. E. Bur’yak, “On Relation between Boltzmann Equation Solution and Landau-Fokker-Planck Equation Solution,” Matematicheskii sbornik 181(4), 435 (1990).

    MATH  Google Scholar 

  13. A. A. Arsen’ev, Lections on Kinetic Equations (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  14. O. E. Lanford III, “On a Derivation of Boltzmann Equation,” in Nonequilibrium Phenomena I. The Boltzmann Equation, Ed. by J. L. Lebowitz and E. W. Montroll (Amsterdam, 1983; Mir, Moscow, 1986).

  15. A. V. Skorokhod, Stochastic Equations for Complex Systems (Nauka, Moscow, 1983) [in Russian].

    MATH  Google Scholar 

  16. V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, and A. F. Turbin, Handbook on Probability Theory and Mathematical Statistics (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  17. C. Villani, A Review of Mathematical Topics in Collisional Kinetic Theory. Handbook of Mathematical Fluid Dynamics (Vol. 1), Ed. by S. Friedlander and D. Serre (Elsevier Science, 2002), Available from http://www.umpa.ens-lyon.fr/cvillani.

  18. A. Lukschin, H. Neunzert, and J. Struckmeier, “Coupling of Navier-Stickes and Boltzmann Regions,” in HERMES Aerodynamics R/Q Program meeting (VKI, 1992).

  19. A. V. Lukshin and S. N. Smirnov, “On One Effective Stochastic Algorithm to Solve Boltzmann Equation,” Zhurnal vychisl. matem. i matem. fiziki 29(1), 118 (1989).

    MathSciNet  Google Scholar 

  20. H. Babovsky, “On a Simulation Scheme for the Boltzmann Equation,” Math. Meth. in the Appl. Sci. 8, 223 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  21. V. I. Kolobov, R. R. Arslanbekov, V. V. Aristov, A. A. Frolova, and S. A. Zabelok, “Unified Solver for Rarefied and Continuum Flows with Adaptive Mesh and Algorithm Refinment,” Journal of Computational Physics 223, 589 (2007).

    Article  MATH  Google Scholar 

  22. K. Morinishi, “A Continuum Kinetic Hybrid Approach for Multi-Scale Flow Simulation,” in European Conf. on Computational Fluid Dynamics ECCOMAS CFD 2006, TU Delft, the Netherlands (Delft, 2006).

  23. V. A. Titarev, “Conservative Numerical Methods for Model Kinetic Equations,” Computers and Fluids, 1446 (2007).

  24. P. Degond and M. Lemou, “Turbulence Models for Incompressible Fluids Derived from Kinetic Theory,” J. Math. Fluid Mech., 257 (2002).

  25. T. G. Elizarova, Quasi-Hydrodynamic Equations and Methods of Viscous Flows Calculation (Nauchnyi mir, Moscow, 2007) [in Russian].

    Google Scholar 

  26. S. V. Bogomolov, “Stochastic Hydrodynamic Model,” Matematicheskoe modelirovanie 2(11), 85 (1990).

    MATH  MathSciNet  Google Scholar 

  27. S. V. Bogomolov, “Fokker-Planck Equation for the Gas at Moderate Knudsen Numbers,” Matematicheskoe modelirovanie 15(4), 16 (2003).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Bogomolov, 2009, published in Matematicheskoe Modelirovanie, 2009, Vol. 21, No. 1, pp. 111–117.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogomolov, S.V. On Fokker-Planck model for the Boltzmann collision integral at the moderate Knudsen numbers. Math Models Comput Simul 1, 739–744 (2009). https://doi.org/10.1134/S2070048209060088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048209060088

Keywords

Navigation