Advertisement

New Applications of the p-Adic Nevanlinna Theory

  • Alain EscassutEmail author
  • Ta Thi Hoai An
Research Articles
  • 36 Downloads

Abstract

Let IK be an algebraically closed field of characteristic 0 complete for an ultrametric absolute value. Following results obtained in complex analysis, here we examine problems of uniqueness for meromorphic functions having finitely many poles, sharing points or a pair of sets (C.M. or I.M.) defined either in the whole field IK or in an open disk, or in the complement of an open disk. Following previous works in C, we consider functions fn(x)fm(ax + b), gn(x)gm(ax + b) with |a| = 1 and nm, sharing a rational function and we show that f/g is a n + m-th root of 1 whenever n + m ≥ 5. Next, given a small function w, if n, m ∈ IN are such that |nm| ≥ 5, then fn(x)fm(ax + b) − w has infinitely many zeros. Finally, we examine branched values for meromorphic functions fn(x)fm(ax + b).

Key words

p-adic meromorphic functions Nevanlinna’s theory values distribution small functions Picard values branched values 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. T. H. An, “Defect relation for non-Archimedean analytic maps into arbitrary projective varieties,” Proc. Amer.Math. Soc. 135, 1255–1261 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    K. Boussaf, “Motzkin factorization in algebras of analytic elements,” Ann. Math. Blaise Pascal 2 (1), 73–91 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    K. Boussaf, A. Escassut and J. Ojeda, “Complex and p-adic branched functions and growth of entire functions,” Bull. BelgianMath. Soc. Simon Stevin 22, 781–796 (2015).MathSciNetzbMATHGoogle Scholar
  4. 4.
    A. Boutabaa, “Théorie de Nevanlinna p-adique,” Manuscripta Math. 67, 251–269 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. Boutabaa and A. Escassut, “URS and URSIMS for p-adic meromorphic functions inside a disk,” Proc. EdinburghMath. Society 44, 485–504 (2001).CrossRefzbMATHGoogle Scholar
  6. 6.
    K. S. Charak, “Value distribution theory of meromorphic functions,” Math. Newsletter 18 (4), 1–35 (2009).MathSciNetGoogle Scholar
  7. 7.
    J. F. Chen, “Uniqueness of meromorphic functions sharing two finite sets,” paper to appear.Google Scholar
  8. 8.
    A. Escassut, Value Distribution in p-Adic Analysis (WSCP Singapore, 2015).zbMATHGoogle Scholar
  9. 9.
    A. Escassut and T. T. H. An, “p-AdicNevanlinna theory outside of a hole,” VietnamJ. Math. 45 (4), 681–694 (2017).CrossRefzbMATHGoogle Scholar
  10. 10.
    H. K. Ha, “On p-adic meromorphic functions,” Duke Math. J. 50, 695–711 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M. O. Hanyak and A. A. Kondratyuk, “Meromorphic functions in m-punctured complex planes,” Matematychni Studii 27 (1), 53–69 (2007).MathSciNetzbMATHGoogle Scholar
  12. 12.
    Vu Hoai An, Pham Ngoc Hoa and Ha Huy Khoai, “Value sharing problems for differential polynomials of meromorphic functions in a non-Archimedean field,” paper to appear.Google Scholar
  13. 13.
    M. Krasner, “Prolongement analytique uniforme et multiforme dans les corps valués complets,” Les tendances géométriques en algèbre et théorie des nombres, Clermont-Ferrand, pp.94–141 (1964). Centre National de la Recherche Scientifique (1966). (Colloques internationaux de C. N.R. S. Paris, 143).Google Scholar
  14. 14.
    Liu Gang and Meng Chao, “Uniqueness for the difference monomials of p-adic entire punctions,” paper to appear.Google Scholar
  15. 15.
    E. Motzkin, “La décomposition d’un élément analytique en facteurs singuliers,” Ann. Inst. Fourier 27 (1), 67–82 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    X. G. Qi, L. Z. Yang and K. Liu, “Uniqueness and periodicity of meromorphic functions concerning the difference operator,” Comput. Math. Appl. 60, 1739–1746 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    K. Yamanoi, “The secondmain theorem for small functions and related problems,” ActaMath. 192, 225–294 (2004).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Université Clermont AuvergneLaboratoire de Mathématiques Blaise PascalAUBIEREFrance
  2. 2.Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam
  3. 3.Institute of Mathematics and Applied Sciences (TIMAS)Thang Long UniversityHanoiVietnam

Personalised recommendations