Skip to main content
Log in

Applications of the Jack’s lemma for the meromorphic functions

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In this paper, we give some results on \(\frac{zf^{\prime }(z)}{f(z)}\) for the certain classes of f(z) meromorphic functions. For the function \(f(z)= \frac{1}{z}+c_{0}+c_{1}z+c_{2}z^{2}+\cdots\) defined in the punctured disc \(U=\left\{ z:0<\left| z\right| <1\right\}\) such that \(f(z)\in \mathcal {M}_{\alpha }\), we estimate a modulus of the angular derivative \(\frac{zf^{\prime }(z)}{f(z)}\) function at the boundary point b with \(\frac{ bf^{\prime }(b)}{f(b)}=-\alpha\). Moreover, the module of the angular derivative of the function \(\frac{zf^{\prime }(z)}{f(z)}\) at the boundary point b will be strengthened from the below, taking into account the zeros of the function \(\frac{zf^{\prime }(z)}{f(z)}+1\) different from \(z=0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azeroğlu, T.A., and B.N. Örnek. 2013. A refined Schwarz inequality on the boundary. Complex Variables and Elliptic Equations 58: 571–577.

    Article  MathSciNet  Google Scholar 

  2. Boas, H.P. 2010. Julius and Julia: Mastering the Art of the Schwarz lemma. American Mathematics Monthly 117: 770–785.

    Article  MathSciNet  Google Scholar 

  3. Burns, D.M., and S.G. Krantz. 1994. Rigidity of holomorphic mappings and a new Schwarz Lemma at the boundary. Journal of the American Mathematical Society 7: 661–676.

    Article  MathSciNet  Google Scholar 

  4. Chelst, D. 2001. A generalized Schwarz lemma at the boundary. Proceedings of the American Mathematical Society 129: 3275–3278.

    Article  MathSciNet  Google Scholar 

  5. Dubinin, V.N. 2004. The Schwarz inequality on the boundary for functions regular in the disc. Journal of Mathematics Science 122: 3623–3629.

    Article  Google Scholar 

  6. Dubinin, V.N. 2015. Bounded holomorphic functions covering no concentric circles. Journal of Mathematics Science 207: 825–831.

    Article  MathSciNet  Google Scholar 

  7. Elin, M., F. Jacobzon, M. Levenshtein, and D. Shoikhet. 2014. The Schwarz lemma: Rigidity and Dynamics. Harmonic and Complex Analysis and its Applications, 135–230. Berlin: Springer.

    MATH  Google Scholar 

  8. Golusin, G. M. 1966. Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow.

  9. Huang, X., and L. Chen. 2012. Generalized Schwarz lemmas for meromorphic functions. Bulletin Korean Mathematics Society 48: 417–422.

    Article  MathSciNet  Google Scholar 

  10. Jack, I.S. 1971. Functions starlike and convex of order $\alpha $. Journal of London Mathematics Society 3: 469–474.

    Article  MathSciNet  Google Scholar 

  11. Jeong, M. 2011. The Schwarz lemma and boundary fixed points. Journal of Korean Society Mathematic Education Series B: Pure Applied Mathematics 18: 219–227.

    MathSciNet  MATH  Google Scholar 

  12. Jeong, M. 2014. The Schwarz lemma and its applications at a boundary point. Journal of Korean Society Mathematic Education Series B: Pure Applied Mathematics 21: 275–284.

    MathSciNet  Google Scholar 

  13. Mateljević, M. 2015. Note on Rigidity of Holomorphic Mappings & Schwarz and Jack Lemma (in preparation), ResearchGate.

  14. Mateljević, M. 2016. Schwarz lemma, the Carathéodory and Kobayashi Metrics and Applications in Complex Analysis. XIX GEOMETRICAL SEMINAR, At Zlatibor., 1–12.

  15. Mateljević, M. 2016. Hyperbolic geometry and Schwarz lemma, ResearchGate.

  16. Osserman, R. 2000. A sharp Schwarz inequality on the boundary. Proceedings of the American Mathematical Society 128: 3513–3517.

    Article  MathSciNet  Google Scholar 

  17. Örnek, B.N. 2013. Sharpened forms of the Schwarz lemma on the boundary. Bulletin Korean Mathematics Society 50: 2053–2059.

    Article  MathSciNet  Google Scholar 

  18. Örnek, B.N. 2014. Inequalities for the non-tangential derivative at the boundary for holomorphic function. Communications Korean Mathematics Society 29 (3): 439–449.

    Article  MathSciNet  Google Scholar 

  19. Pommerenke, Ch. 1992. Boundary Behaviour of Conformal Maps. Berlin: Springer.

    Book  Google Scholar 

  20. Tang, X., T. Liu, and J. Lu. 2015. Schwarz lemma at the boundary of the unit polydisk in $ \mathbb{C} ^{n}$. Science China Mathematics 58: 1–14.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their constructive comments and suggestions on the earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bülent Nafi Örnek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydinoğlu, S., Örnek, B.N. Applications of the Jack’s lemma for the meromorphic functions. J Anal 29, 891–903 (2021). https://doi.org/10.1007/s41478-020-00285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-020-00285-3

Keywords

Mathematics Subject Classification

Navigation