Skip to main content
Log in

p-Adic (3, 2)-rational dynamical systems

  • Research Articles
  • Published:
P-Adic Numbers, Ultrametric Analysis, and Applications Aims and scope Submit manuscript

Abstract

We investigate behavior of trajectory of a (3, 2)-rational p-adic dynamical system in complex p-adic field \(\mathbb{C}_p\). The paper studies Siegel disks and attractors of these dynamical systems. The set of fixed points of the (3, 2)-rational function may by empty, or may consist of a single element, or of two elements. We obtained the following results. In the case of existence of two fixed points, the p-adic dynamical system has a very rich behavior: we show that Siegel disks may either coincide or be disjoint for different fixed points of the dynamical system. Besides, we find the basin of the attractor of the system. For some values of the parameters there are trajectories which go arbitrary far from the fixed points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio, U. A. Rozikov and I. A. Sattarov, “p-Adic (2, 1)-rational dynamical systems,” J. Math. Anal. Appl. 398(2), 553–566 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Albeverio, A. Khrennikov, B. Tirozzi and S. De Smedt, “p-Adic dynamical systems,” Theor. Math. Phys. 114, 276–287 (1998).

    Article  MATH  Google Scholar 

  3. S. Albeverio, A. Khrennikov and P. E. Kloeden, “Memory retrieval as a p-adic dynamical system,” BioSystems 49, 105–115 (1999).

    Article  Google Scholar 

  4. S. Albeverio, A. Khrennikov, B. Tirozzi and S. De Smedt, “p-Adic dynamical systems,” Theor. Math. Phys. 114, 276–287 (1998).

    Article  MATH  Google Scholar 

  5. V. Anashin and A. Khrennikov, Applied Algebraic Dynamics 49, de Gruyter Expositions in Math. (Walter de Gruyter, Berlin, New York, 2009).

    Book  MATH  Google Scholar 

  6. V. S. Anashin, A. Yu. Khrennikov and E. I. Yurova, “Characterization of ergodicity of p-adic dynamical systems by using van der Put basis,” Doklady Math. 83(3), 306–308 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  7. V. S. Anashin, “Uniformly distributed sequences of p-adic integers,” Math. Notes 55(2), 109–133 (1994).

    Article  MathSciNet  Google Scholar 

  8. V. S. Anashin, “Uniformly distributed sequences in computer algebra, or how to construct program generators of random numbers,” J.Math. Sci. 89(4), 1355–1390 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  9. V. Anashin, “Non-Archimedean ergodic theory and pseudorandom generators,” Computer J. 53(4), 370–392 (2010).

    Article  Google Scholar 

  10. V. Anashin, “Automata finiteness criterion in terms of van der Put series of automata functions,” p-Adic Numbers Ultr. Anal. Appl. 4(2), 151–160 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  11. V. Anashin, “The non-Archimedean theory of discrete systems,” Math. Comput. Sci. 6(4), 375–393 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  12. V. Anashin, A. Khrennikov and E. Yurova, “T-functions revisited: new criteria for bijectivity transitivity,” Des. Codes Cryptogr. 71(3), 383–407 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  13. V. Anashin, A. Khrennikov and E. Yurova, “Ergodicity criteria for non-expanding transformations of 2-adic spheres,” Disc. Contin. Dyn. Syst. 34(2), 367–377 (2014).

    MATH  MathSciNet  Google Scholar 

  14. G. Call and J. Silverman, “Canonical height on varieties with morphisms,” Compositio Math. 89, 163–205 (1993).

    MATH  MathSciNet  Google Scholar 

  15. A.-H. Fan and L.-M. Liao, “On minimal decomposition of p-adic polynomial dynamical systems,” Adv. Math. 228, 2116–2144 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  16. Fan Aihua, Fan Shilei, Liao Lingmin and Wang Yuefei, “On minimal decomposition of p-adic homographic dynamical systems,” Adv. Math. 257, 92–135 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Furno, “Orbit equivalence of p-adic transformations and their iterates,” Monatsh. Math. 175(2), 249–276 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  18. F. Q. Gouvea, p-Adic Numbers (Springer, Berlin 1991).

    Google Scholar 

  19. K-L. Lindahl, “The size of quadratic p-adic linearization disks,” Adv. Math. 248, 872–894 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Khamraev and F. M. Mukhamedov, “On a class of rational p-adic dynamical systems,” J. Math. Anal. Appl. 315(1), 76–89 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Khrennikov and E. Yurova, “Criteria of ergodicity for p-adic dynamical systems in terms of coordinate functions,” Chaos Solit. Fract. 60, 11–30 (2014).

    Article  MathSciNet  Google Scholar 

  22. A. Yu. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Kluwer, Dordrecht, 1994).

    Book  MATH  Google Scholar 

  23. J. Kingsbery, A. Levin, A. Preygel and C. E. Silva, “On measure-preserving c1 transformations of compactopen subsets of non-archimedean local fields,” Trans. Amer. Math. Soc. 361(1), 61–85 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Kingsbery, A. Levin, A. Preygel and C. E. Silva, “Dynamics of the p-adic shift and applications,” Disc. Contin. Dyn. Syst. 30(1), 209–218 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  25. N. Koblitz, p-Adic Numbers, p-Adic Analysis and Zeta-Function (Springer, Berlin, 1977).

    Book  Google Scholar 

  26. D. Lin, T. Shi and Z. Yang, “Ergodic theory over \(\mathbb{F}_2 [[X]]\),” Finite Fields Appl. 18, 473–491 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  27. F. M. Mukhamedov and H. Akin, “On non-Archimedean recurrence equations and their applications,” J. Math. Anal. Appl. 423, 1203–1218 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  28. F. M. Mukhamedov and U. A. Rozikov, “On rational p-adic dynamical systems,” Meth. Func. Anal. Topol. 10(2), 21–31 (2004).

    MATH  MathSciNet  Google Scholar 

  29. F. M. Mukhamedov, “On dynamical systems and phase transitions for q + 1-state p-adic Potts model on the Cayley tree,” Math. Phys.Anal. Geom. 16(1), 49–87 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  30. F. M. Mukhamedov, “A dynamical system approach to phase transitions for p-adic Potts model on the Cayley tree of order two,” Rep. Math. Phys. 70(3), 385–406 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  31. H.-O. Peitgen, H. Jungers and D. Saupe, Chaos Fractals (Springer, Heidelberg-New York, 1992).

    Book  Google Scholar 

  32. J.-E. Pin, “Profinite methods in automata theory,” in Symposium on Theoretical Aspects of Computer Science — STACS 2009, pp. 31–50 (Freiburg, 2009).

    Google Scholar 

  33. U. A. Rozikov and I. A. Sattarov, “On a non-linear p-adic dynamical system,” p-Adic Numbers Ultr. Anal. Appl. 6(1), 53–64 (2014).

    MathSciNet  Google Scholar 

  34. S. Jeong, “Shift operators and two applications to 55-2 [[T]],” J. Number Theory 139, 112–137 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Jeong, “Toward the ergodicity of p-adic 1-Lipschitz functions represented by the van der Put series,” J. Number Theory 133(9), 2874–2891 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  36. T. Shi, V. Anashin and D. Lin, “Linear weaknesses in T-functions,” in SETA 2012, eds. T. Helleseth and J. Jedwab, Lecture Notes Comp. Sci. 7280, 279–290 (Springer-Verlag, Berlin-Heidelberg, 2012).

    Google Scholar 

  37. J. Silverman, The Arithmetic of Dynamical Systems, Graduate Texts in Math. 241 (Springer-Verlag, New York, 2007).

    MATH  Google Scholar 

  38. T. I. Smyshlyaeva, “A criterion for functions defined by automata to be bounded-determinate,” Disc. Math. Appl. 23(3–4), 299–312 (2013).

    MathSciNet  Google Scholar 

  39. V. S. Vladimirov, I. V. Volovich and E.B I. Zelenov, “The spectral theory in the p-adic quantum mechanics,” Izvestia Akad. Nauk SSSR, Ser. Mat. 54(2), 275–302 (1990).

    MATH  MathSciNet  Google Scholar 

  40. Qiu Weiyuan, Wang Yuefei, Yang Jinghua, Yin Yongchen, “On metric properties of limit sets of contractive analytic non-Archimedean dynamical systems,” J. Math. Anal. Appl. 414(1), 386–401 (2014).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Sattarov.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sattarov, I.A. p-Adic (3, 2)-rational dynamical systems. P-Adic Num Ultrametr Anal Appl 7, 39–55 (2015). https://doi.org/10.1134/S2070046615010045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046615010045

Key words

Navigation