Skip to main content
Log in

Orbit equivalence of \(p\)-adic transformations and their iterates

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Orbit equivalence is a weaker notion of equivalence than isomorphism for measurable systems. We examine \(p\)-adic transformations in various orbit equivalence classes, including an example that preserves an infinite measure. Although \(p\)-adic transformations have been studied with respect to Haar measure, we use other i.i.d. product measures to see examples of different orbit equivalence classes. Since translation by an integer is an iterate of translation by 1, we gain an understanding of the possible behaviors of orbit equivalence classes under iteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anashin, V.: Ergodic transformations in the space of \(p\)-adic integers. In: \(p\)-adic Mathematical Physics, AIP Conference Proceedings, vol. 826, pp. 3–24. The American Institute of Physics, Melville (2006)

  2. Bryk, J., Silva, C.: Measurable dynamics of simple \(p\)-adic polynomials. Am. Math. Mon. 112(3), 212–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coelho, Z., Parry, W.: Ergodicity of \(p\)-adic multiplications and the distribution of Fibonacci numbers. In: Topology, Ergodic Theory, Real Algebraic Geometry. Am. Math. Soc. Transl. Ser. 2, vol. 202, pp. 51–70. American Mathematical Society, Providence (2001)

  4. Fan, A.H., Li, M.T., Yao, J.Y., Zhou, D.: \(p\)-adic affine dynamical systems and applications. C. R. Math. Acad. Sci. Paris 342(2), 129–134 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fan, A.H., Li, M.T., Yao, J.Y., Zhou, D.: Strict ergodicity of affine \(p\)-adic dynamical systems on \(\mathbb{Z}_p\). Adv. Math. 214(2), 666–700 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Khrennikov, A., Lindahl, K.O., Gundlach, M.: Ergodicity in the \(p\)-adic framework. In: Operator Methods in Ordinary and Partial Differential Equations (Stockholm, 2000), Oper. Theory Adv. Appl., vol. 132, pp. 245–251. Birkhäuser, Basel (2002)

  7. Gundlach, M., Khrennikov, A., Lindahl, K.O.: On ergodic behavior of \(p\)-adic dynamical systems. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4(4), 569–577 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Durand, F., Paccaut, F.: Minimal polynomial dynamics on the set of 3-adic integers. Bull. Lond. Math. Soc. 41(2), 302–314 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Anashin, V., Khrennikov, A., Yurova, E.: Using van der Put basis to determine if a 2-adic function is measure-preserving or ergodic w.r.t. Haar measure. In: Advances in Non-Archimedean Analysis, Contemp. Math., vol. 551, pp. 33–38. American Mathematical Society, Providence (2011)

  10. Anashin, V.S., Khrennikov, A.Y., Yurova, E.I.: Characterization of ergodic \(p\)-adic dynamical systems in terms of the van der Put basis. Dokl. Math. 83(3), 306–308 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Anashin, V., Khrennikov, A., Yurova, E.: Ergodicity criteria for non-expanding transformations of 2-adic spheres. Discrete Contin. Dyn. Syst. 34(2), 367–377 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Yurova, E.: van der Put basis and \(p\)-adic dynamics. p-Adic Number Ultrametric Anal. Appl. 2(2), 175–178 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khrennikov, A., Yurova, E.: Criteria of measure-preserving for \(p\)-adic dynamical systems in terms of the van der Put basis. J. Number Theory 133(2), 484–491 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Khrennikov, A., Yurova, E.: Criteria of ergodicity for \(p\)-adic dynamical systems in terms of coordinate functions. Chaos Solitons Fractals 60, 11–30 (2014)

    Article  MathSciNet  Google Scholar 

  15. Anashin, V.S.: Uniformly distributed sequences of \(p\)-adic integers. Math. Notes 55(1–2), 109–133 (1994)

    Article  MathSciNet  Google Scholar 

  16. Yurova, E.: On measure-preserving functions over \({\mathbb{Z}}_3\). p-Adic Numbers Ultrametric Anal. Appl. 4(4), 326–335 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chabert, J.L., Fan, A.H., Fares, Y.: Minimal dynamical systems on a discrete valuation domain. Discrete Contin. Dyn. Syst. 25(3), 777–795 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kingsbery, J., Levin, A., Preygel, A., Silva, C.E.: Dynamics of the \(p\)-adic shift and applications. Discrete Contin. Dyn. Syst. 30(1), 209–218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kingsbery, J., Levin, A., Preygel, A., Silva, C.E.: Measurable dynamics of maps on profinite groups. Indag. Math. (N.S.) 18(4), 561–581 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Anashin, V.S.: Noncommutative algebraic dynamics: ergodic theory for profinite groups. Tr. Mat. Inst. Steklova (Izbrannye Voprosy Matematicheskaya Fiziki i \(p\)-adicheskaya Analiza) 265, 36–65 (2009)

  21. Yurova, E.: On ergodicity of \(p\)-adic dynamical systems for arbitrary prime \(p\). p-Adic Numbers Ultrametric Anal. Appl. 5(3), 239–241 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Anashin, V., Khrennikov, A.: Applied Algebraic Dynamics, de Gruyter Expositions in Mathematics, vol. 49. Walter de Gruyter & Co., Berlin (2009)

    Book  Google Scholar 

  23. Kingsbery, J., Levin, A., Preygel, A., Silva, C.E.: On measure-preserving \(C^1\) transformations of compact-open subsets of non-Archimedean local fields. Trans. Am. Math. Soc. 361(1), 61–85 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Koblitz, N.: \(p\)-adic Numbers, \(p\)-adic Analysis, and Zeta-Functions. In: Graduate Texts in Mathematics, vol. 58, 2nd edn. Springer-Verlag, New York (1984)

  25. Mahler, K.: \(p\)-adic Numbers and their functions. In: Cambridge Tracts in Mathematics, vol. 76, 2nd edn. Cambridge University Press, Cambridge (1981)

  26. Robert, A.M.: Graduate Texts in Mathematics. A course in \(p\)-adic Analysis, vol. 198. Springer-Verlag, New York (2000)

  27. Schikhof, W.H.: Cambridge Studies in Advanced Mathematics. Ultrametric calculus, vol. 4. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  28. Aaronson, J.: Mathematical Surveys and Monographs. An introduction to infinite ergodic theory, vol. 50. American Mathematical Society, Providence (1997)

    Google Scholar 

  29. Friedman, N.: Introduction to Ergodic Theory. In: Van Nostrand Reinhold Mathematical Studies, vol. 29. Van Nostrand Reinhold Co., New York (1970)

  30. Petersen, K.: Ergodic Theory. In: Cambridge Studies in Advanced Mathematics, vol. 2. Cambridge University Press, Cambridge (1989) (corrected reprint of the 1983 original)

  31. Walters, P.: Graduate Texts in Mathematics. An Introduction to Ergodic Theory, vol. 79. Springer-Verlag, New York (1982)

  32. Dye, H.A.: On groups of measure preserving transformation I. Am. J. Math. 81, 119–159 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dye, H.A.: On groups of measure preserving transformations II. Am. J. Math. 85, 551–576 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  34. Krieger, W.: On non-singular transformations of a measure space. I, II. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 11, 83–97 (1969) (ibid. 11, 98–119, 1969)

  35. Krieger, W.: On the Araki–Woods asymptotic ratio set and non-singular transformations of a measure space. In: Contributions to Ergodic Theory and Probability (Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970), pp. 158–177. Lecture Notes in Mathematics, vol. 160. Springer, Berlin (1970)

  36. Katznelson, Y., Weiss, B.: The classification of nonsingular actions, revisited. Ergod. Theory Dyn. Syst. 11(2), 333–348 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hamachi, T., Osikawa, M.: Seminar on Mathematical Sciences. Ergodic Groups of Automorphisms and Krieger’s Theorems, vol. 3. Department of Mathematics, Keio University, Yokohama (1981)

  38. Dooley, A.H., Hawkins, J., Ralston, D.: Families of type \({\rm III}_0\) ergodic transformations in distinct orbit equivalent classes. Monatsh. Math. 164(4), 369–381 (2011). doi:10.1007/s00605-010-0258-0

  39. Giordano, T., Putnam, I.F., Skau, C.F.: Topological orbit equivalence and \(C^*\)-crossed products. J. Reine Angew. Math. 469, 51–111 (1995)

    MathSciNet  MATH  Google Scholar 

  40. Giordano, T., Putnam, I.F., Skau, C.F.: Full groups of Cantor minimal systems. Israel J. Math. 111, 285–320 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Halmos, P.R.: Invariant measures. Ann. Math. 2(48), 735–754 (1947)

    Article  MathSciNet  Google Scholar 

  42. Ornstein, D.S.: On invariant measures. Bull. Am. Math. Soc. 66, 297–300 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  43. Diao, H., Silva, C.E.: Digraph representations of rational functions over the \(p\)-adic numbers. p-Adic Numbers Ultrametric Anal. Appl. 3(1), 23–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Maharam, D.: Incompressible transformations. Fund. Math. 56, 35–50 (1964)

    MathSciNet  MATH  Google Scholar 

  45. Krengel, U.: Entropy of conservative transformations. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 7, 161–181 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  46. Parry, W.: Entropy and Generators in Ergodic Theory. W. A. Benjamin Inc, New York (1969)

    MATH  Google Scholar 

  47. Janvresse, É., de la Rue, T.: Zero Krengel entropy does not kill Poisson entropy. Ann. Inst. Henri Poincaré Probab. Stat. 48(2), 368–376 (2012)

    Article  MATH  Google Scholar 

  48. Janvresse, É., Meyerovitch, T., Roy, E., de la Rue, T.: Poisson suspensions and entropy for infinite transformations. Trans. Am. Math. Soc. 362(6), 3069–3094 (2010)

    Article  MATH  Google Scholar 

  49. Hajian, A.B., Kakutani, S.: Example of an ergodic measure preserving transformation on an infinite measure space. In: Contributions to Ergodic Theory and Probability (Proc. Conf., Ohio State Univ., Columbus, Ohio, 1970), pp. 45–52. Springer, Berlin (1970)

  50. Eigen, S., Hajian, A.B., Prasad, V.S.: Universal skyscraper templates for infinite measure preserving transformations. Discrete Contin. Dyn. Syst. 16(2), 343–360 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Hamachi, T.: Suborbits and group extensions of flows. Israel J. Math. 100, 249–283 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  52. Katok, S.: Student Mathematical Library. \(p\)-adic Analysis Compared with Real, vol. 37. American Mathematical Society, Providence (2007)

  53. Furno, J.: Ergodic theory of \(p\)-adic transformations. Ph.D. thesis, University of North Carolina at Chapel Hill, Chapel Hill (2013)

Download references

Acknowledgments

The results in this paper are part of the author’s Ph.D. dissertation at the University of North Carolina at Chapel Hill [53]. The author would like to thank Jane Hawkins, her adviser, for her guidance and encouragement. The author would also like to thank the referees for their careful reading and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Furno.

Additional information

Communicated by H. Bruin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furno, J. Orbit equivalence of \(p\)-adic transformations and their iterates. Monatsh Math 175, 249–276 (2014). https://doi.org/10.1007/s00605-014-0645-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-014-0645-z

Keywords

Mathematics Subject Classification (2010)

Navigation