Skip to main content
Log in

Phenotypic Plasticity of Two Stipa in Grassland Responses to Elevated CO2 and Precipitation Change

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

Elevated atmospheric CO2 concentration and precipitation change affect plants’ survival and thriving. Phenotypic plasticity can show plants adaptability to varying environment. Physiological plasticity reflects plants capacity to open areas, and morphological plasticity reflects capacity to survive and grow. In this study, we simulated combined effects of elevated CO2 and precipitation change on the phenotypic plasticity of two Stipa species: Stipa grandis and Stipa breviflora. Our results indicated that plasticity of physiology was higher than plasticity of morphology under either ambient or elevated CO2 concentration in both Stipa species. S. breviflora showed higher plasticity index of physiological (PIp) and plasticity index of morphological (PIm) than S. grandis under elevated CO2 concentration. Therefore, we speculate that S. breviflora is more adaptable than S. grandis under high CO2 concentration in the future. Elevated atmospheric CO2 concentration and simultaneous precipitation change is advantageous to S. breviflora distribution expansion, nonetheless, the changing environments also favor the competitive ability of S. grandis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6

REFERENCES

  1. Arbona, V., Hossain, Z., López-Climent, M.F., Perez-Clemente, R.M., et al., Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus, Physiol. Plant., 2008, vol. 132, pp. 452–466.

    Article  CAS  PubMed  Google Scholar 

  2. Bai, Y., Han, X., Wu, J., et al., Ecosystem stability and compensatory effects in the Inner Mongolia grassland, Nature, 2004, vol. 431, pp. 181–184.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Cakmak, I. and Horst, W.J., Effect of aluminum on lipid-peroxidation, superoxide-dismutase, catalase and peroxidase-activities in root-tips of soybean (Glycine max), Plant Physiol., 1991, vol. 83, pp. 463–468.

    Article  CAS  Google Scholar 

  4. Catoni, R., Granata, M.U., Sartori, F., et al., Corylus avellana responsiveness to light variations: morphological, anatomical, and physiological leaf trait plasticity, Photosynthetica, 2015, vol. 53, pp. 35–46.

    Article  Google Scholar 

  5. Du, K.B., Xu, L., Wu, H., et al., Ecophysiological and morphological adaption to soil flooding of two poplar clones differing in flood-tolerance, Flora, 2012, vol. 207, pp. 96–106.

  6. Ghannoum, O., Phillips, N.G., Conroy, J.P., et al., Exposure to preindustrial, current and future atmospheric CO2 and temperature differentially affects growth and photosynthesis in Eucalyptus, Global Change Biol., 2010, vol. 16, pp. 303–319.

    Article  ADS  Google Scholar 

  7. Grossiord, C., Sevanto, S., Adams, H.D., et al., Precipitation, not air temperature, drives functional responses of trees in semi-arid ecosystems, J. Ecol., 2017, vol. 105, pp. 163–175.

    Article  Google Scholar 

  8. Hernández, J.A. and Almansa, M.S., Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves, Physiol. Plant., 2002, vol. 115, pp. 251–257.

    Article  PubMed  Google Scholar 

  9. Karimi, S., Yadollahi, A., Arzani, K., et al., Gas-exchange response of almond genotypes to water stress, Photosynthetica, 2015, vol. 53, pp. 29–34.

    Article  CAS  Google Scholar 

  10. Li, X.L., Li, N., Yang, J., et al., Morphological and photosynthetic responses of riparian plant Distylium chinense seedlings to simulated Autumn and Winter flooding in Three Gorges Reservoir Region of the Yangtze River, China, Acta Ecol. Sin., 2011, vol. 31, pp. 31–39.

    Article  Google Scholar 

  11. Lv, X., Zhou, G., Wang, Y., et al., Sensitive indicators of zonal Stipa species to changing temperature and precipitation in Inner Mongolia grassland, China, Front. Plant Sci., 2016, vol. 7, p. 73. https://doi.org/10.3389/fpls.2016.00073

    Article  PubMed  PubMed Central  Google Scholar 

  12. Maxwell, K. and Johnson, G.N., Chlorophyll fluorescence—a practical guide, J. Exp. Bot., 2000, vol. 51, pp. 659–668.

    Article  CAS  PubMed  Google Scholar 

  13. Mielke, M.S., de Almeida, A.A.F.D., Gomes, F.P., et al., Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding, Environ. Exp. Bot., 2003, vol. 50, pp. 221–231.

    Article  CAS  Google Scholar 

  14. Morgan, J.A., Lecain, D.R., Pendall, E., et al., C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland, Nature, 2011, vol. 476, pp. 202–205.

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Niinemets, Ü. and Valladares, F., Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints, Plant Biol., 2004, vol. 6, pp. 254–268.

    Article  CAS  PubMed  Google Scholar 

  16. Ogweno, J.O., Song, X.S., Shi, K., et al., Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum, J. Plant Growth Regul., 2008, vol. 27, pp. 49–57.

    Article  CAS  Google Scholar 

  17. Pezeshki, S.R., Wetland plant responses to soil flooding, Environ. Exp. Bot., 2001, vol. 46, pp. 299–312.

    Article  Google Scholar 

  18. Porra, R.J., Thompson, W.A., and Kriedemann, P.E., Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy, Biochim. Biophys. Acta., 1989, vol. 975, pp. 384–394.

    Article  CAS  Google Scholar 

  19. Schlichting, C.D., The evolution of phenotypic plasticity in plants, Ann. Rev. Ecol. Syst., 1986, vol. 17, pp. 667–693.

    Article  Google Scholar 

  20. Seddon, A.W.R., Macias-Fauria, M., Long, P.R., et al., Sensitivity of global terrestrial ecosystems to climate variability, Nature, 2016, vol. 531, pp. 229–232.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Stocker, T.F., Qin, D., Plattner, G.K., et al., IPCC, Summary for policymakers, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge Univ. Press, 2013.

    Google Scholar 

  22. Upham, B.L. and Jahnke, L.S., Photooxidative reactions in chloroplast thylakoids. Evidence for a fenton-type reaction promoted by superoxide or ascorbate, Photosynth. Res., 1986, vol. 8, pp. 235–247.

    Article  CAS  PubMed  Google Scholar 

  23. Valladares, F., Wright, S.J., Lasso, E., et al., Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest, Ecology, 2000, vol. 81, pp. 1925–1936.

    Article  Google Scholar 

  24. Van der Kooi, C.J., Reich, M., Löw, M., de Kok, L.J., et al., Growth and yield stimulation under elevated CO2 and drought: A meta-analysis on crops, Environ. Exp. Bot., 2016, vol. 122, pp. 150–157.

    Article  CAS  Google Scholar 

  25. Walters, M.B. and Reich, P.B., Low-light carbon balance and shade tolerance in the seedlings of woody plants: do winter deciduous and broad-leaved evergreen species differ?, New Phytol., 1999, vol. 143, pp. 143–154.

    Article  Google Scholar 

  26. Wang, H., Zhou, G.S., Jiang, Y.L., et al., Photosynthetic acclimation and leaf traits of Stipa bungeana in response to elevated CO2 under five different watering conditions, Photosynthetica, 2017, vol. 55, pp. 164–175.

    Article  CAS  Google Scholar 

  27. Xu, Z., Shimizu, H., Ito, S., et al., Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland, Planta, 2014, vol. 239, pp. 421–435.

    Article  CAS  PubMed  Google Scholar 

  28. Yu, J., Jing, Z.B., and Cheng, J.M., Genetic diversity and population structure of Stipa bungeana, an endemic species in Loess Plateau of China, revealed using combined ISSR and SRAP markers, Genet. Mol. Res., 2014, vol. 13, pp. 1097–1108.

    Article  CAS  PubMed  Google Scholar 

  29. Yu, B., Zhao, C.Y., Li, J., et al., Morphological, physiological, and biochemical responses of Populus euphratica to soil flooding, Photosynthetica, 2015, vol. 53, pp. 110–117.

    Article  Google Scholar 

  30. Zelikova, T.J., Williams, D.G., Hoenigman, R., et al., Seasonality of soil moisture mediates responses of ecosystem phenology to elevated CO2 and warming in a semi-arid grassland, J. Ecol., 2015, vol. 103, pp. 1119–1130.

    Article  CAS  Google Scholar 

  31. Zhang, X.S., Sun, S.Z., Yong, S.P., et al., Vegetation of China and its Geographic Pattern: Illustration of the Vegetation Map of the People’s Republic of China (1 : 1 000 000), Beijing: Geol. Publ. House, 2007.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the research group of adaptability of terrestrial ecosystems, Institute of Botany, CAS for support and assistance.

Funding

This study was supported by the National Natural Science Foundation of China (31661143028) and the State Key Development Program of Basic Research (2010CB951300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Zhou.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: Chl, chlorophyll; C/N, the ratio of carbon and nitrogen; DM, Total dry mass; Fv/Fo, potential activity of PSII; Gs, stomatal conductance; LA, Leaf surface area; LWC, Leaf water content; MDA, malondialdehyde; ФPSII, the actual PSII efficiency; Na, nitrogen concentration based on area; OTCs, open top chambers; Pn, net photosynthetic rate; PI, Plant phenotypic plasticity index; PIm, plasticity index of morphological; PIp, plasticity index of physiological; RD, dark respiration; R/S, the ratio of root and shoot; SLA, the specific leaf area; Ψw, leaf water potential.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y.H., Zhou, G.S., Jiang, Y.L. et al. Phenotypic Plasticity of Two Stipa in Grassland Responses to Elevated CO2 and Precipitation Change. Contemp. Probl. Ecol. 17, 150–160 (2024). https://doi.org/10.1134/S1995425524010128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425524010128

Keywords:

Navigation