Skip to main content
Log in

Cytogenetic Characteristics of Embryogenic Cell Lines of Different Ages Obtained by Somatic Embryogenesis in Larix sibirica Ledeb.

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

A cytogenetic study of four embryogenic cell lines (CLs) of Siberian larch (Larix sibirica Ledeb.) of different ages, including young (two 4-month and one 16-month) and long-term proliferating (11-year) CLs has been carried out. Three CLs are diploid, and their karyotypes contain the number of chromosomes typical for this species (2n = 24). A 16-month CL capable of forming somatic embryos is aneuploid (2n = 25). This CL is probably characterized by a trisomy in one of the submetacentric chromosome pairs. A long-term proliferating CL, from which viable fruiting clones have been obtained, retained a diploid number of chromosomes for all 11 years of cultivation and still remained genetically stable. The karyotype of coniferous plants is characterized by high stability, and the most species from the family Pinaceae, to which the genus Larix Mill. belongs, contain 24 chromosomes (2n = 24). Therefore, the detection of cytogenetically stable cell lines with an altered chromosome set is of great interest for genetic studies of this group of plants. The identification of stable diploid cell lines is important for genetic and breeding studies aimed at the creation of highly productive plantations with specified hereditary properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Arrillaga, I., Guevara, M.A., Muñoz-Bertomeu, J., Lázaro-Gimeno, D., Sáez-Laguna, E., Díaz, L.M., Torralba, L., Mendoza-Ponderous, I., Segura, I., and Cervera, M.T., Selection of haploid cell lines from megagametophyte cultures of maritime pine as a DNA source for massive sequencing of the species, Plant Cell, Tissue Organ Cult., 2014, vol. 118, no. 1, pp. 147–155. https://doi.org/10.1007/s11240-014-0470-z

    Article  CAS  Google Scholar 

  2. Bairu, M.W., Aremu, A.O., and Staden, J., Somaclonal variation in plants: causes and detection methods, Plant Growth Regul., 2011, vol. 63, no. 2, pp. 147–173. https://doi.org/10.1007/s10725-010-9554-x

    Article  CAS  Google Scholar 

  3. Burg, K., Helmersson, A., Bozhkov, P., and Arnold, S., Developmental and genetic variation in no.uclear microsatellite stability during somatic embryogenesis in pine, J. Exp. Bot., 2007, vol. 58, no. 3, pp. 687–698. https://doi.org/10.1093/jxb/erl241

    Article  CAS  PubMed  Google Scholar 

  4. Eastman, P., Webster, F.B., Pitel, J.A., and Roberts, D.R., Evaluation of somaclonal variation during somatic embryogenesis of interior spruce (Picea glauca engelmanii complex) using culture morphology and isozyme analysis, Plant Cell Rep., 1991, vol. 10, no. 8, pp. 425–430. https://doi.org/10.1007/BF00232617

    Article  CAS  PubMed  Google Scholar 

  5. Fourré, J.L., Berger, P., Niquet, L., and Andre, P., Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches, Theor. Appl. Genet., 1997, vol. 94, no. 2, pp. 159–169. https://doi.org/10.1007/s001220050395

    Article  Google Scholar 

  6. Gajdošová, A., Vooková, B., Kormuťák, A., Libiaková, G., and Doležel, J., Induction, protein composition and DNA ploidy level of embryogenic calli of silver fir and its hybrids, Biol. Plant., 1995, vol. 37, no. 2, pp. 169–176. https://doi.org/10.1007/bf02913205

    Article  Google Scholar 

  7. Goryachkina, O.V. and Sizykh, O.A., Cytogenetic response of conifer plants in anthropogenically disturbed areas of Krasnoyarsk city and its districts, Khvoinye Boreal’noi Zony, 2012, vol. 30, nos. 1–2, pp. 46–51.

    Google Scholar 

  8. Goryachkina, O.V., Badaeva, E.D., Muratova, E.N., Zelenin, A.V., Molecular cytogenetic analysis of Siberian Larix species by fluorescence in situ hybridization, Plant Syst. Evol., 2013, vol. 299, no. 2, pp. 471–479. https://doi.org/10.1007/s00606–012–0737-y

    Article  Google Scholar 

  9. Goryachkina, O.V., Park, M.E., and Tretyakova, I.N., Cytogenetic peculiarities of Larix sibirica Ledeb. embryogenic cell lines in in vitro culture, Vestn. Tomsk. Gos. Univ., Biol., 2017, no. 39, pp. 140–153, https://doi.org/10.17223/19988592/39/9

  10. Goryachkina, O.V., Park, M.E., Tretyakova, I.N., Badaeva, E.D., and Muratova, E.N., Cytogenetic stability of young and long-term embryogenic cultures of Larix sibirica, Cytologia, 2018, vol. 83, no. 3, pp. 323–329. https://doi.org/10.1508/cytologia.83.323

    Article  Google Scholar 

  11. Grif, V.G. and Agapova, no.D., On the methods of description of plant karyotypes, Bot. Zh., 1986, vol. 71, no. 4, pp. 550–553.

    Google Scholar 

  12. Heddle, J.A. and Carrano, A.V., The DNA content of micronuclei induced in mouse bone marrow by γ-irradiation: evidence that micronuclei arise from acentric chromosomal fragments, Mutat. Res., Fund. Mol. Mech. Mutagen., 1977, vol. 44, no. 1, pp. 63–69. https://doi.org/10.1016/0027-5107(77)90115-4

    Article  CAS  Google Scholar 

  13. Helmersson, A., Arnold, S., Burg, K., and Bozhkov, P.V., High stability of nuclear microsatellite loci during the early stages of somatic embryogenesis in Norway spruce, Tree Physiol., 2004, vol. 24, no. 10, pp. 1181–1186. https://doi.org/10.1093/treephys/24.10.1181

    Article  CAS  PubMed  Google Scholar 

  14. Hizume, M., Karyomorphological studies in the family Pinaceae, Mem. Fac. Educ., Ehime Univ., Ser. III: Natural Sci., 1988, vol. 8, no. 2, pp. 1–108.

    Google Scholar 

  15. Hou, J., Wang, X., Liu, W., Jiang, X., and Gai, Y., Large-Scale Quantitative proteomic analysis during different stages of somatic embryogenesis in Larix olgensis, Curr. Issues Mol. Biol., 2023, vol. 45, no. 3, pp. 2021–2034. https://doi.org/10.3390/cimb45030130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ignatenko, R.V., Galibina, no.A., and Raevsky, B.V., Cytogenetic evaluation of Pinus sylvestris L. in the European north of Russia (Republic of Karelia), Turczaninowia, 2022, vol. 25, no. 1, pp. 73–85.https://doi.org/10.14258/turczaninowia.25.1.7

    Article  Google Scholar 

  17. Il’inskikh, N.N., Il’inskikh, I.N., and Bocharov, E.F., Tsitogeneticheskii gomeostaz i immunitet (Cytogenetic Homeostasis and Immunity), Novosibirsk: Nauka, 1986.

  18. Krutovsky, K.V., Tretyakova, I.N., Oreshkova, N.V., Pak, M.E., Kvitko, O.V., and Vaganov, E.A., Somaclonal variation of haploid in vitro tissue culture obtained from Siberian larch (Larix sibirica Ledeb.) megagametophytes for whole genome de novo sequencing, In Vitro Cell. Dev. Biol.: Plant, 2014, vol. 50, no. 5, pp. 655–664. https://doi.org/10.1007/s11627-014-9619-z

    Article  CAS  Google Scholar 

  19. Kunakh, V.A., Genome variability in plant somatic cells. 2. Natural variability, Biopolimery Kletka, 1995, vol. 11, no. 6, pp. 5–40.

    Google Scholar 

  20. Lelu, M.A., Bastien, C., Klimaszewska, K., Ward, C., and Charest, P.J., An improved method for somatic plantlet production in hybrid larch (Larix × leptoeuropaea): Part 1. Somatic embryo maturation, Plant Cell, Tissue Organ Cult., 1994, vol. 36, no. 1, pp. 107–115. https://doi.org/10.1007/BF00048321

    Article  CAS  Google Scholar 

  21. Lelu-Walter, M.-A. and Pâques, L.E., Simplified and improved somatic embryogenesis of hybrid larches (Larix × eurolepis and Larix × marschlinsii). Perspectives for breeding, Ann. For. Sci., 2009, vol. 66, no. 104, pp. 1–10. https://doi.org/10.1051/forest/2008079

    Article  Google Scholar 

  22. Marum, L., Rocheta, M., Maroco, J., Oliveira, M., and Miguel, C., Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster), Plant Cell Rep., 2009, vol. 28, no. 4, pp. 673–682. https://doi.org/10.1007/s00299-008-0668-9

    Article  CAS  PubMed  Google Scholar 

  23. Mo, L.M., Arnold, S., and Lagererantz, U., Morphogenic and genetic stability in longterm embryogenic cultures and somatic embryos of Norway spruce (Picea abies {L.} Karst), Plant Cell Rep., 1989, vol. 8, no. 7, pp. 375–378. https://doi.org/10.1007/BF00270072

    Article  CAS  PubMed  Google Scholar 

  24. Muratova, E.N., Karyological studies in Larix sibirica (Pinaceae) from different parts of its area, Bot. Zh., 1991, vol. 76, no. 11, pp. 1586–1595.

    Google Scholar 

  25. Muratova, E.N., Sedelnikova, T.S., Pimenov, A.V., Karpjuk, T.V., Sizikh, O.A., and Kvitko, O.V., Karyological analysis of larch species from Siberia and the Far East of Russia, For. Sci. Technol., 2007, vol. 3, no. 2, pp. 89–94.

    Google Scholar 

  26. Muratova, E.N., Karpyuk, T.V., Vladimirova, O.S., Sizykh, O.A., and Kvitko, O.V., A cytological study of Siberian larch in anthropogenically disturbed areas of the city of Krasnoyarsk and its vicinity, Vestn. Ekol., Lesoved. Landshaftoved., 2009, no. 9, pp. 99–108.

  27. Muratova, E.N., Sedel’nikova, T.S., Pimenov, A.V, Karpyuk, T.V., Kvitko, O.V, and Sizykh, O.A., Karyological polymorphism of larch species, Bioraznoobraziye listvennits Aziatskoy Rossii (Larch Biodiversity of the Asian Russia), Novosibirsk: GEO, pp. 34–49.

  28. Nkongolo, K.K. and Klimaszewska, K., Cytological and molecular relationships between Larix decidua, L. leptolepis and Larix×eurolepis: identification of species-specific Chromosomes and synchronization of mitotic cell, Theor. Appl. Genet., 1995, vol. 90, no. 6, pp. 827–834. https://doi.org/10.1007/BF00222018

    Article  CAS  PubMed  Google Scholar 

  29. Nunes, S., Marum, L., Farinha, N., Pereira, V.T., Almeida, T., Sousa, D., Mano, N., Figueiredo, J., Dias, M.C., and Santos, C., Somatic embryogenesis of hybrid Pinus elliottii var. elliottii × P. caribaea var. hondurensis and ploidy assessment of somatic plants, Plant Cell, Tissue Organ Cult., 2018, vol. 132, no. 1, pp. 71–84. https://doi.org/10.1007/s11240-017-1311-7

    Article  CAS  Google Scholar 

  30. O’Brien, I.E.W., Smith, D.R., Gardner, R.C., and Murray, B.C., Flow cytometric determination of genome size in Pinus, Plant Sci., 1996, vol. 115, no. 1, pp. 91–99. https://doi.org/10.1016/0168-9452(96)04356-7

    Article  Google Scholar 

  31. Park, Y.S., Conifer somatic embryogenesis and multi-varietal forestry, in Challenges and Opportunities for the World’s Forests in the 21st Century, Dordercht: Springer-Verlag, 2014, vol. 81, pp. 425–439. https://doi.org/10.1007/978-94-007-7076-8

  32. Park, M.E., Ivanitskaya, A.S., Dvoinina, L.M., and Tret’yakova, I.N., The embryogenic potential of long-term proliferation cell lines of Larix sibirica in vitro, Sib. Lesn. Zh., 2016, no. 1, pp. 27–38. https://doi.org/10.15372/SJFS20160103

  33. Peng, Ch., Gao, F., Wang, H., Tretyakova, I.N., Nosov, A.N., Shen, H., and Yang, L., Morphological and physiological indicators for screening cell lines with high potential for somatic embryo maturation at an early stage of somatic embryogenesis in Pinus koraiensis, Plants, 2022, vol. 11, p. 1867. https://doi.org/10.3390/plants11141867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sarmast, M.K., Genetic transformation and somaclonal variation in conifers, Plant Biotechnol. Rep., 2016, vol. 10, no. 6, pp. 309–325. https://doi.org/10.1007/s11816-016-0416-5

    Article  Google Scholar 

  35. Schmid, W., The micronucleus test, Mutat. Res., Fund. Mol. Mech. Mutagen., 1975, vol. 31, no. 1, pp. 9–15. https://doi.org/10.1016/0165-1161(75)90058-8

    Article  CAS  Google Scholar 

  36. Sedel’nikova, T.S. and Pimenov, A.V., Variability of chromosome number and chromosomal rearrangements in Pinus sylvestris (Pinaceae) in arid conditions of the Lower Volga and Southern Siberia, Bot. Zh., 2021, vol. 106, no. 4, pp. 353–362, https://doi.org/10.31857/S0006813621040116

    Article  Google Scholar 

  37. Tremblay, L., Levasseur, C., and Tremblay, F.M., Frequency of somaclonal variation in plants of Black spruce (Picea mariana, Pinaceae) and White spruce (P. glauca, Pinaceae) derived from somatic embryogenesis and identification of some factors involved in genetic instability, Am. J. Bot., 1999, vol. 86, no. 10, pp. 1373–1381.

    Article  CAS  PubMed  Google Scholar 

  38. Tret’yakova, I.N., RF Patent 2456344, 2012.

  39. Tret’yakova, I.N. and Barsukova, A.V., Somatic embryogenesis in in vitro culture of three larch species, Russ. J. Dev. Biol., 2012, vol. 43, no. 6, pp. 353–361. https://doi.org/10.1134/S1062360412060082

    Article  Google Scholar 

  40. Tret’yakova, I.N. and Park, M.E., Somatic polyembriogenesis of Larix sibirica in embryogenesis in vitro culture, Russ. J. Dev. Biol., 2018, vol. 49, no. 4, pp. 222–233. https://doi.org/10.1134/S1062360418040069

    Article  Google Scholar 

  41. Tret’yakova, I.N., Kudoyarova, G.R., Park, M.E., Kazachenko, A.S., Shuklina, A.S., Akhiyarova, G.R., Korobova, A.V., and Veselov, S.U., Content and immunohistochemical localization of hormones during in vitro somatic embryogenesis in long-term proliferating Larix sibirica cultures, Plant Cell, Tissue Organ Cult., 2019, vol. 136, no. 3, pp. 511–522. https://doi.org/10.1007/s11240-018-01533-y

    Article  CAS  Google Scholar 

  42. Tret’yakova, I.N., Park, M.E., Ivanitskaya, A.S., and Oreshkova, N.V., Peculiarities of somatic embryogenesis of long-term proliferating embryogenic cell lines of Larix sibirica in vitro, Russ. J. Plant Physiol., 2016, vol. 63, no. 6, pp. 800–810. https://doi.org/10.1134/S1021443716050137

    Article  CAS  Google Scholar 

  43. Tret’yakova, I.N., Park, M.E., Oreshkova, N.V., and Padutov, V.E., The Regenerative capacity of Siberian larch cell lines in vitro, Biol. Bull., 2022, vol. 49, no. 6, pp. 609–619. https://doi.org/10.1134/S1062359022050193

    Article  Google Scholar 

  44. Von Aderkas, P., Pattanavibool, R., Hristoforoglu, K., and Ma, Y., Embryogenesis and genetic stability in long term megagametophyte-derived cultures of larch, Plant Cell, Tissue Organ Cult., 2003, vol. 75, no. 1, pp. 27–34. https://doi.org/10.1023/A:1024614209524

    Article  CAS  Google Scholar 

  45. Von Arnold, S., Sabala, I., Bozhkov, P., Dyachok, J., and Filonova, L., Developmental pathways of somatic embryogenesis, Plant Cell, Tissue Organ Cult., 2002, vol. 69, no. 3, pp. 233–249. https://doi.org/10.1023/A:1015673200621

    Article  CAS  Google Scholar 

  46. Zorinyants, S.E., Nosov, A.V., Badaeva, E.D., Smolenskaya, I.N., and Badaev, N.S., Cytogenetic analysis of a long-term Triticum timopheevii (Zhuk.) Zhuk. cell suspension culture, Plant Breed., 1995, vol. 114, no. 3, pp. 219–225. https://doi.org/10.1111/j.1439-0523.1995.tb00797.x

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation, project no. 22-14-20008, and the Krasnoyarsk Regional Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Park.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies with animals performed by any of the authors.

Additional information

Translated by N. Statsyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M.E., Goryachkina, O.V., Tretyakova, I.N. et al. Cytogenetic Characteristics of Embryogenic Cell Lines of Different Ages Obtained by Somatic Embryogenesis in Larix sibirica Ledeb.. Contemp. Probl. Ecol. 16, 665–671 (2023). https://doi.org/10.1134/S1995425523050104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425523050104

Keywords:

Navigation