Skip to main content
Log in

Estimating Aboveground Forest Biomass Using Radar Methods

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The forest biomass dynamics in boreal forests has a significant effect on global carbon cycles. Biomass estimates provide insight into the carbon balance of forest vegetation in Siberia. This paper discusses the methods used in modern studies (2010–2021) to estimate aboveground forest biomass on the basis of radar remote sensing data. Biomass estimation methodologies are described, including field data collection, data preprocessing, and modeling of relationships between remote sensing (RS) data and biomass. In terms of forest biomass estimation, radar sensing has limited capabilities determined by the characteristics of the survey equipment and parameters of studied forest stands. Modern studies combine optical and radar RS data to estimate forest biomass more accurately using regression models, machine learning, and special techniques (BIOMASAR, SWCM, and MaxEnt). Vegetation optical depth values estimated on the basis of microwave surveys make it possible to solve the saturation problem hindering the estimation of large amounts of biomass. It is difficult to compare the accuracy of biomass estimation methods due to the lack of uniform approaches to experimental and error computation procedures. Errors in biomass estimates produced on the basis of optical and radar data vary considerably (~25% on average). The small amount of reference field data complicates biomass estimations in boreal forests of Siberia. It is believed that the application of machine learning algorithms to remote sensing data collected by the Sentinel-1 and ALOS-PALSAR satellites will make it possible to estimate the biomass of boreal forests with a high spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Argamosa, R., Blanco, A., Baloloy, A., Candido, C., Dumalag, J.B.L., Dimapilis, L., and Paringit, E., Modelling above ground biomass of mangrove forest using Sentinel-1 imagery, ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., 2018, vol. IV-3, pp. 13–20.

    Article  Google Scholar 

  2. Attema, E.P.W. and Ulaby, F.T., Vegetation modeled as a water cloud, Radio Sci., 1978, vol. 13, no. 2, pp. 357–364.

    Article  Google Scholar 

  3. Barbosa, J.M., Broadbent, E.N., and Bitencourt, M.D., Remote sensing of aboveground biomass in tropical secondary forests: a review, Int. J. For. Res., 2014, art. ID 715796.

  4. Bar-On, Y.M., Phillips, R., and Milo, R., The biomass distribution on Earth, Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 25, pp. 6506–6511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brandt, M., Wigneron, J.-P., Chave, J., Tagesson, T., Penuelas, J., Ciais, P., Rasmussen, K., Tian, F., Mbow, C., Al-Yaari, A., Rodriguez-Fernandez, N., Schurgers, G., Zhang, W., Chang, J., Kerr, Y., Verger, A., Tucker, C., Mialon, A., Rasmussen, L., and Fensholt, R., Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands, Nat. Ecol. Evol., 2018, vol. 2, no. 5, pp. 827–835.

    Article  PubMed  Google Scholar 

  6. Brandt, M., Yue, Y., Wigneron, J.P., Tong, X., Tian, F., Jepsen, M.R., Xiao, X., Verger, A., Mialon, A., Al-Yaari, A., Wang, K., and Fensholt, R., Satellite-observed major greening and biomass increase in South China Karst during recent decade, Earth’s Future, 2018, vol. 6, no. 7, pp. 1017–1028.

    Article  Google Scholar 

  7. Breiman, L., Random forests, Mach. Learn., 2001, vol. 45, pp. 5–32.

    Article  Google Scholar 

  8. Cartus, O., Santoro, M., and Kellndorfer, J., Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band, Remote Sens. Environ., 2012, vol. 124, pp. 466–478.

    Article  Google Scholar 

  9. Chen, L., Wang, Y., Ren, C., Zhang, B., and Wang, Z., Optimal combination of predictors and algorithms for forest above-ground biomass mapping from Sentinel and SRTM data, Remote Sens., 2019, vol. 11, no. 4, art. ID 414.

    Article  CAS  Google Scholar 

  10. Chen, T. and Guestrin, C., XGBoost: A scalable tree boosting system, Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (KDD '16), New York: Assoc. Comp. Mach., 2016, pp. 785–794.

  11. Cutler, M.E.J., Boyd, D.S., Foody, G.M., and Vetrivel, A., Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions, ISPRS J. Photogramm. Remote Sens., 2012, vol. 70, pp. 66–77.

    Article  Google Scholar 

  12. Del Frate, F. and Solimini, D., On neural network algorithms for retrieving forest biomass from SAR data, IEEE Trans. Geosci. Remote Sens., 2004, vol. 42, no. 1, pp. 24–34.

    Article  Google Scholar 

  13. Demakov, Yu.P., Puryaev, A.S., Chernykh, V.L., and Chernykh, L.V., Allometric dependances application to 1 assess phytomass of various fractions of trees and simulation of their dynamics, Vestn. Povolzh. Gos. Tekhnol. Univ., Ser.: Les. Ekol. Prirodopol’zovanie, 2015, vol. 2, no. 26, pp. 19–36.

    Google Scholar 

  14. Dong, J., Kaufmann, R.K., Myneni, R.B., Tucker, C.J., Kauppi, P.E., Liski, J., Buermann, W., Alexeyev, V., and Hughes, M.K., Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks, Remote Sens. Environ., 2003, vol. 84, no. 3, pp. 393–410.

    Article  Google Scholar 

  15. Frappart, F., Wigneron, J.-P., Li, X., Liu, X., Al-Yaari, A., Fan, L., Wang, M., Moisy, C., Le Masson, E., Aoulad Lafkih, Z., Vallé, C., Ygorra, B., and Baghdadi, N., Global monitoring of the vegetation dynamics from the vegetation optical depth (VOD): a review, Remote Sens., 2020, vol. 12, no. 18, art. ID 2915.

    Article  Google Scholar 

  16. Ghasemi, N., Sahebi, M.R., and Mohammadzadeh, A., A review on biomass estimation methods using synthetic aperture radar data, Int. J. Geomatics Geosci., 2011, vol. 1, no. 4, pp. 776–788.

    Google Scholar 

  17. Global forest resources assessment 2020: Main report, Rome: FAO, 2020.

  18. Han, H., Wan, R., and Li, B., Estimating forest aboveground biomass using Gaofen-1 images, Sentinel-1 images, and machine learning algorithms: a case study of the Dabie Mountain region, China, Remote Sens., 2022, vol. 14, no. 1, art. ID 176.

    Article  Google Scholar 

  19. Herold, M., Carter, S., Avitabile, V., Espejo, A.B., Jonckheere, I., Lucas, R., McRoberts, R.E., Næsset, E., Nightingale, J., Petersen, R., Reiche, J., Romijn, E., Rosenqvist, A., Rozendaal, D.M.A., Martin Seifert, F., Sanz, M.J., and De Sy, V., The role and need for space-based forest biomass-related measurements in environmental management and policy, Surv. Geophys., 2019, vol. 40, pp. 757–778.

    Article  Google Scholar 

  20. Houghton, R.A., Butman, D.E., Bunn, A.G., Krankina, O.N., Schlesinger, P., and Stone, T.A., Mapping Russian forest biomass with data from satellites and forest inventories, Environ. Res. Lett., 2007, vol. 2, no. 4, art. ID 045032.

    Article  Google Scholar 

  21. Huang, W., Sun, G., Zhang, Z., Ni, W., and Dubayah, R., Sensitivity of multi-source SAR backscatter to changes in forest aboveground biomass, Remote Sens., 2015, vol. 7, no. 8, pp. 9587–9609.

    Article  Google Scholar 

  22. Huang, X., Ziniti, B., Torbick, N., and Ducey, M.J., Assessment of forest above ground biomass estimation using multi-temporal C-band Sentinel-1 and polarimetric L-band PALSAR-2 data, Remote Sens., 2018, vol. 10, no. 9, art. ID 1424.

    Article  Google Scholar 

  23. Joshi, N., Mitchard, E., Schumacher, J., Johannsen, V.K., Saatchi, S., and Fensholt, R., L-Band SAR backscatter related to forest cover, height and aboveground biomass at multiple spatial scales across Denmark, Remote Sens., 2015, vol. 7, no. 4, pp. 4442–4472.

    Article  Google Scholar 

  24. Kaasalainen, S., Holopainen, M., Karjalainen, M., Vastaranta, M., Kankare, V., Karila, K., and Osmanoglu, B., Combining lidar and synthetic aperture radar data to estimate forest biomass: status and prospects, Forests, 2015, vol. 6, no. 1, pp. 252–270.

    Article  Google Scholar 

  25. Kumar, L., Sinha, P., Taylor, S., and Alqurashi, A., Review of the use of remote sensing for biomass estimation to support renewable energy generation, Remote Sens., 2015, vol. 9, no. 1, art. ID 097696.

    Google Scholar 

  26. Kuplich, T., Curran, P., and Atkinson, P., Relating SAR image texture to the biomass of regenerating tropical forests, Int. J. Remote Sens., 2005, vol. 26, no. 21, pp. 4829–4854.

    Article  Google Scholar 

  27. Laurin, G.V., Balling, J., Corona, P., Mattioli, W., Papale, D., Puletti, N., Rizzo, M., Truckenbrodt, J., and Urban, M., Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy with integration of ALOS2 and Sentinel-2 data, J. Appl. Remote Sens., 2018, vol. 12, no. 1, art. ID 016008.

    Article  Google Scholar 

  28. Li, W., Chen, E., Li, Z., Zhang, W., and Chang, J., Assessing performance of Tomo-SAR and backscattering coefficient for hemi-boreal forest aboveground biomass estimation, J. Indian Soc. Remote Sens., 2015, vol. 44, pp. 41–48.

    Article  CAS  Google Scholar 

  29. Li, Y., Li, M., Li, C., and Liu, Z., Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms, Sci. Rep., 2020, vol. 10, art. ID 9952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, Y.Y., van Dijk, A.I.J.M., de Jeu, R.A.M., Canadell, J.G., McCabe, M.F., Evans, J.P., and Wang, G., Recent reversal in loss of global terrestrial biomass, Nat. Clim. Change, 2015, vol. 5, pp. 470–474.

    Article  Google Scholar 

  31. Lovynska, V., Buchavyi, Y., Lakyda, P., Sytnyk, S., Gritzan, Y., and Sendziuk, R., Assessment of pine aboveground biomass within Northern Steppe of Ukraine using Sentinel-2 data, J. For. Sci., 2020, vol. 66, pp. 339–348.

    Article  Google Scholar 

  32. Mette, T., Papathanassiou, K P., Hajnsek, I., and Zimmermann, R., Forest biomass estimation using polarimetric SAR interferometry, IEEE Int. Geosci. Remote Sens. Symp., 2002, vol. 2, pp. 817–819.

  33. Mialon, A., Rodriguez-Fernandez, N., Santoro, M., Saatchi, S., Mermoz, S., Bousquet, E., and Kerr, Y., Evaluation of the sensitivity of SMOS L-VOD to forest above-ground biomass at global scale, Remote Sens., 2020, vol. 12, no. 9, art. ID 1450.

    Article  Google Scholar 

  34. Mitchard, E., Saatchi, S., Woodhouse, I., Nangendo, G., Ribeiro, N., Williams, M., Ryan, C., Lewis, S., Feldpausch, T., and Meir, P., Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes, Geophys. Res. Lett., 2009, vol. 36, no. 23, art. ID L23401.

    Article  Google Scholar 

  35. Momen, M., Wood, J., Novick, K., Pangle, R., Pockman, W., McDowell, N., and Konings, A., Interacting effects of leaf water potential and biomass on vegetation optical depth, J. Geophys. Res. Biogeosci., 2017, vol. 122, no. 11, pp. 3031–3046.

    Article  Google Scholar 

  36. Morin, D., Planells, M., Guyon, D., Villard, L., Mermoz, S., Bouvet, A., Thevenon, H., Dejoux, J-F., Le Toan, T., and Dedieu, G., Estimation and mapping of forest structure parameters from open access satellite images: development of a generic method with a study case on coniferous plantation, Remote Sens., 2019, vol. 11, no. 11, art. ID 1275.

    Article  Google Scholar 

  37. Næsset, E., Bollandsås, O., Gobakken, T., and Gregoire, T., Model-assisted estimation of change in forest biomass over an 11 year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data”, Remote Sens. Environ., 2013, vol. 128, pp. 299–314.

    Article  Google Scholar 

  38. Nguyen, Viet L., Kieu, L., Tu, T., and Hồng, T., Seasonal effects of backscattering intensity of ALOS-2 PALSAR-2 (L-Band) on retrieval forest biomass in the tropics, J. Geosci. Environ. Prot., 2020, vol. 8, pp. 26–40.

    Google Scholar 

  39. Norovsuren, B., Batchuluun, T., Batomunkuev, V., and Renchin, T., Estimation for forest biomass and coverage using satellite data in small scale area, Mongolia, IOP Conf. Ser.: Earth Environ. Sci., vol. 320, art. ID 012019.

  40. Omar, H., Misman, M.A., and Kassim, A.R., Synergetic of PALSAR-2 and Sentinel-1A SAR Polarimetry for retrieving aboveground biomass in dipterocarp forest of Malaysia, Appl. Sci., 2017, vol. 7, no. 7, art. ID 675.

    Article  Google Scholar 

  41. Pandey, U., Kushwaha, S., Kachhwaha, T., Kunwar, D., and Dadhwal, V., Potential of Envisat ASAR data for woody biomass assessment, Trop. Ecol., 2010, vol. 51, no. 1, pp. 117–124.

    Google Scholar 

  42. Persson, H., Jonzén, J., and Nilsson, M., Combining TanDEM-X and Sentinel-2 for large-area species-wise prediction of forest biomass and volume, Int. J. Appl. Earth Obs. Geoinf., 2021, vol. 96, art. ID 102275.

    Google Scholar 

  43. Phillips, S.J., Anderson, R.P., and Schapire, R.E., Maximum entropy modeling of species geographic distributions, Ecol. Model., 2006, vol. 190, nos. 3–4, pp. 231–259.

    Article  Google Scholar 

  44. Rodriguez-Fernandez, N., Mialon, A., Mermoz, S., Bouvet, A., Richaume, P., Al Bitar, A., Al-Yaari, A., Brandt, M., Kaminski, T., Le Toan, T., Kerr, Y., and Wigneron, J.-P., An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: High sensitivity of L-VOD to above-ground biomass in Africa, Biogeosciences, 2018, vol. 15, pp. 4627–4645.

    Article  CAS  Google Scholar 

  45. Ronoud, G., Fatehi, P., Darvishsefat, A., Tomppo, E., Praks, J., and Schaepman, M., Multi-sensor aboveground biomass estimation in the broadleaved hyrcanian forest of Iran, Can. J. Remote Sens., 2021, vol. 47, no. 6, pp. 818–834.

    Article  Google Scholar 

  46. Saatchi, S., Harris, N., Brown, S., Lefsky, M., Mitchard, E., Salas, W., Zutta, B., Buermann, W., Lewis, S., Hagen, S., Petrova, S., White, L., Silman, M., and Morel, A., Benchmark map of forest carbon stocks in tropical regions across three continents, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 108, no. 24, pp. 9899–9904.

    Article  Google Scholar 

  47. Saatchi, S., Houghton, R., dos Santos Alvalá, R.C., Soares, J.V., and João, YuY., Distribution of aboveground live biomass in the Amazon basin, Glob. Change Biol., 2007, vol. 13, no. 4, pp. 816–837.

    Article  Google Scholar 

  48. Saatchi, S., Marlier, M., Chazdon, R., Clark, D., and Russell, A., Impact of spatial variability of forest structure on radar estimation of aboveground biomass, Remote Sens. Environ., 2011, vol. 115, no. 11, pp. 2836–2849.

    Article  Google Scholar 

  49. Santi, E., Chiesi, M., Fontanelli, G., Lapini, A., Paloscia, S., Pettinato, S., Ramat, G., and Santurri, L., Mapping woody volume of mediterranean forests by using SAR and machine learning: a case study in Central Italy, Remote Sens., 2021, vol. 13, no. 4, art. ID 809.

    Article  Google Scholar 

  50. Santoro, M., Beaudoin, A., Beer, C., Cartus, O., Fransson, J., Hall, R.J., Pathe, C., Schmullius, C., Shvidenko, A., Schepaschenko, D., Thurner, M., and Wegmüller, U., Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR, Remote Sens. Environ., 2015, vol. 168, pp. 316–334.

    Article  Google Scholar 

  51. Santoro, M., Beer, C., Cartus, O., Schmullius, C., Shvidenko, A., McCallum, I., Wegmüller, U., and Wiesmann, A., The BIOMASAR algorithm: An approach for retrieval of forest growing stock volume using stacks of multi-temporal SAR data, Proc. ESA Living Planet Symp., 2010. http://pure.iiasa.ac.at/9430.

  52. Santoro, M., Beer, C., Shvidenko, A, Mccallum, I., Wegmüller, U., Wiesmann, A., and Schmullius, C., Comparison of forest biomass estimates in Siberia using spaceborne SAR, inventory-based information and the LPJ dynamic global vegetation model, ESA ENVISAT Symp., Montreux, 2007. http://pure.iiasa.ac.at/8394.

  53. Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, D., Avitabile, V., Araza, A., de Bruin, S, Herold, M., Quegan, S., Rodriguez-Veiga, P., Balzter, H., Carreiras, J., Schepaschenko, D., Korets, M., Shimada, M., Itoh, T., Martínez, Á.M., Cavlovic, J., Gatti, R.C., da Conceição Bispo, P., Dewnath, N., Labrière, N., Liang, J., Lindsell, J., Mitchard, E.T.A., Morel, A., Pascagaza, A.M.P., Ryan, C.M., Slik, F., Laurin, G.V., Verbeeck, H., Wijaya, A., and Willcock, S., The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations, Earth Syst. Sci. Data, 2021, vol. 13, pp. 3927–3950.

    Article  Google Scholar 

  54. Santoro, M., Cartus, O., Fransson, J.E.S., Shvidenko, A., McCallum, I., Hall, R.J., Beaudoin, A., Beer, C., and Schmullius, C., Estimates of forest growing stock volume for Sweden, Central Siberia, and Québec using Envisat advanced synthetic aperture radar backscatter data, Remote Sens., 2013, vol. 5, no. 9, pp. 4503–4532.

    Article  Google Scholar 

  55. Santoro, M., Cartus, O., Mermoz, S., Bouvet, A., Le Toan, T., Carvalhais, N., Rozendaal, D., Herold, M., Avitabile, V., Quegan, S., Carreiras, J., Rauste, Y., Balzter, H., Schmullius, C., and Seifert, F.M., A detailed portrait of the forest aboveground biomass pool for the year 2010 obtained from multiple remote sensing observations, Geophys. Res. Abstr., 2018, vol. 20, art. ID 18932.

    Google Scholar 

  56. Sarker, M. and Nichol, J., Improved forest biomass estimates using ALOS AVNIR-2 texture indices, Remote Sens. Environ., 2011, vol. 115, no. 4, pp. 968–977.

    Article  Google Scholar 

  57. Schepaschenko, D., Moltchanova, E., Fedorov, S., Karminov, V., Ontikov, P., Santoro, M., See, L., Kositsyn, V., Shvidenko, A., Romanovskaya, A., Korotkov, V., Lesiv, M., Bartalev, S., Fritz, S., Shchepashchenko, M., and Kraxner, F., Russian forest sequesters substantially more carbon than previously reported, Sci. Rep., 2021, vol. 11, art. ID 12825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schlund, M., Kotowska, M.M., Brambach, F., Hein, J., Wessel, B., Camarretta, N., Silalahi, M., Jaya, N.S., Erasmi, S., Leuschner, C., and Kreft, H., Spaceborne height models reveal above ground biomass changes in tropical landscapes, For. Ecol. Manage., 2021, vol. 497, art. ID 119497.

    Article  Google Scholar 

  59. Sessa, R. and Han, A.J.D., Terrestrial Essential Climate Variables for Climate Change Assessment, Mitigation and Adaptation (GTOS 52 – Biennial Report Supplement), Rome: FAO, 2008. https://www.fao.org/3/i0197e/ i0197e.pdf

    Google Scholar 

  60. Shvidenko, A., Schepaschenko, D., Nilsson, S., and Bouloui, Y., Semi-empirical models for assessing biological productivity of Northern Eurasian forests, Ecol. Model., 2007, vol. 204, no. 1, pp. 163–179.

    Article  Google Scholar 

  61. Sochilova, E.N., Surkov, N.V., Ershov, D.V., and Khamedov, V.A., Assessment of biomass of forest species using satellite images of high spatial resolution (on the example of the forest of Khanty-Mansi Autonomous Okrug), Vopr. Lesn. Nauki, 2018, no. 1, pp. 1–23. https://cyberleninka.ru/article/n/otsenka-zapasov-fitomassy-lesnyh-porod-po-sputnikovym-izobrazheniyam-vysokogo-prostranstvennogo-razresheniya-na-primere-lesov-hanty. Cited October 22, 2021.

  62. Stelmaszczuk-Górska, M.A., Rodriguez-Veiga, P., Ackermann, N., Thiel, C., Balzter, H., and Schmullius, C., Non-parametric retrieval of aboveground biomass in Siberian boreal forests with ALOS PALSAR interferometric coherence and backscatter intensity, J. Imaging, 2016, vol. 2, no. 1, art. ID 1.

    Article  Google Scholar 

  63. Stelmaszczuk-Górska, M.A., Urbazaev, M., Schmullius, C., and Thiel, C., Estimation of above-ground biomass over boreal forests in Siberia using updated in situ, ALOS-2 PALSAR-2, and RADARSAT-2 data, Remote Sens., 2018, vol. 10, no. 10, art. ID 1550.

    Article  Google Scholar 

  64. Strunk, J.L., Temesgen, H., Andersen, H.E., and Packalen, P., Prediction of forest attributes with field plots, Landsat, and a sample of lidar strips, Photogramm. Eng. Remote Sens., 2014, vol. 80, no. 2, pp. 143–150.

    Article  Google Scholar 

  65. Su, H., Shen, W., Wang, J., Ali, A., and Li, M., Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests, For. Ecosyst., 2020, vol. 7, art. ID 64.

    Article  Google Scholar 

  66. Usoltsev, V.A., Chasovskikh, V.P., Noritsina, Yu.V., and Noritsin, D.V., Allometric models of tree biomass for airborne laser scanning and ground inventory of carbon pool in the forests of Eurasia: Comparative analysis, Sib. J. For. Sci., 2016, vol. 4, pp. 68–76.

    Google Scholar 

  67. Usol’tsev, V.A., Kovyazin, V.F., Tsepordei, I.S., Chasovskikh, V.P., and Azarenok, V.A., Foliage biomass of the forests of Eurasia: correction of empirical modeling methods, Izv. S.-Peterb. Lesotekh. Akad., 2020, vol. 232, pp. 50–78.

    Google Scholar 

  68. Vashum, K.T. and Jayakumar S. Methods to estimate above-ground biomass and carbon stock in natural forests—a review, J. Ecosyst. Ecogr., 2012, vol. 2, art. ID 116.

  69. Wagner, W., Luckman, A., Vietmeier, J., Tansey, K., Balzter, H., Schmullius, C., Davidson, M., Gaveau, D., Gluck, M., Le Toan, T., Quegan, S., Shvidenko, A., Wiesmann, A., and Yu, J., Large-scale mapping of boreal forest in SIBERIA using ERS tandem coherence and JERS backscatter data, Remote Sens. Environ., 2003, vol. 85, no. 2, pp. 125–144.

    Article  Google Scholar 

  70. Wang, G., Wang, N., and Guo, W., Modelling forest aboveground biomass based on GF-3 dual-polarized and WorldView-3 data: a case study in Datong National Wetland Park, China, Math. Probl. Eng., 2021, vol. 2021, art. ID 9925940.

    Google Scholar 

  71. Wang, Y., Zhang, X., and Guo, Z., Estimation of tree height and aboveground biomass of coniferous forests in North China using stereo ZY-3, multispectral Sentinel-2, and DEM data, Ecol. Indic., 2021, vol. 126, art. ID 107645.

    Article  Google Scholar 

  72. Xiangxing, W., Li, Z., Chen, E., Zhao, L., Zhang, W., and Xu, K., Forest aboveground biomass estimation using multi-features extracted by fitting vertical backscattered power profile of tomographic SAR, Remote Sens., 2021, vol. 13, no. 2, art. ID 186.

    Article  Google Scholar 

  73. Xu, L., Saatchi, S.S., Yang, Y., Yu, Y., Pongratz, J., Bloom, A.A., Bowman, K., Worden, J., Liu, J., Yin, Y., Domke, G., McRoberts, R.E., Woodall, C., Nabuurs, G.J., de-Miguel, S., Keller, M., Harris, N., Maxwell, S., and Schimel, D., Changes in global terrestrial live biomass over the 21st century, Sci. Adv., 2021, vol. 7, no. 27, art. ID eabe9829.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported in part by the Russian Science Foundation, project no. 22-17-20012 (https://rscf.ru/project/22-17-20012), and supported on a parity basis by the government of the Republic of Khakassia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Babiy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Emeliyanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babiy, I.A., Im, S.T. & Kharuk, V.I. Estimating Aboveground Forest Biomass Using Radar Methods. Contemp. Probl. Ecol. 15, 433–448 (2022). https://doi.org/10.1134/S1995425522050031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425522050031

Keywords:

Navigation