Skip to main content
Log in

Comparison of nutrition range in Dreissena polymorpha and Dreissena bugensis mussels by biochemical markers

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

Based on biochemical markers, we studied the nutrition ranges of populations of Dreissena polymorpha and Dreissena bugensis mussels that inhabit the Volga reach of the Rybinsk reservoir and differ in the long-term population dynamics. Features of the nutrition ranges of mussels are regarded as the probable cause of changes in the number of mollusca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Molloy, D.P., Karatayev, A.Y., Burlakova, L.E., Kurandina, D.P., and Laruelle, F., Rev. Fish. Sci., 1997, vol. 5, no. 1, pp. 27–97.

    Article  Google Scholar 

  2. Karatayev, A.Y., Burlakova, L.E., and Padilla, D.K., Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers, Invasive aquatic species of Europe-distribution, impact and management, Leppdkoski, E., Gollasch, S., and Olenin, S., Eds., Dordrecht: Kluwer Academic, 2002, pp. 433–446.

    Google Scholar 

  3. Burlakova, L.E., Karatayev, A.Y., and Padilla, D.K., Functional changes in benthic freshwater communities after Dreissena polymorpha (Pallas) invasion and consequences for filtration, The comparative roles of suspension-feeders in ecosystems, Dame, R.F. and Olenin, S., Eds., Dordrecht, The Netherlands: Springer, 2005, pp. 263–275.

    Chapter  Google Scholar 

  4. Vanderploeg, H.A., Liebig, J.R., Carmichael, W.W., Agy, M.A., Johengen, T.H., Fahnenstiel, G.L., and Nalepa, T.F., Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie, Can. J. Fish. Aquat. Sci., 2001, vol. 58, pp. 1208–1221.

    Article  CAS  Google Scholar 

  5. Vanderploeg, H.A., Johengen, T.H., and Liebig, J.R., Feedback between zebra mussel selective feeding and algal composition affects mussel condition: did the regime changer pay a price for its success?, Freshwater Biol., 2009, vol. 54, pp. 47–63.

    Article  Google Scholar 

  6. Hebert, P.D., Wilson, C.C., Murdoch, M.H., and Lazar, R., Demography and ecological impacts of the invading mollusc Dreissena polymorpha, Can. J. Zool., 1991, vol. 69, pp. 405–409.

    Article  Google Scholar 

  7. Zhadin, V.I. and Gerd S.V., Reki, ozera and vodokhranilishcha SSSR. Ikh fauna and flora (Rivers, Lakes and Reservoirs of the USSR, their Fauna and Flora), Moscow, 1961.

  8. Orlova, M.I. and Shcherbina, G.Kh., On Spread of Dreissena bugensis (Dreissenidae, Bivalvia) in the Upper Volga reservoirs, Zool. Zh., 2002, vol. 81, no. 5, pp. 515–520.

    Google Scholar 

  9. Orlova, M.I., Therriault, T.W., Antonov, P.I., and Shcherbina, G.K., Invasion ecology of quagga mussels (Dreissena rostriformis bugensis): a review of evolutionary and phylogenetic impacts, Aquatic Ecology., 2005, vol. 39, pp. 401–418.

    Article  CAS  Google Scholar 

  10. Zhuravel’, P.A., On Dreissena bugensis Dispersal in Artificial Bodies of Water, Gidrobiol. Zh., 1967, vol. 3, no. 2, pp. 87–90.

    Google Scholar 

  11. Lubyanov, I.P., and Zolotareva, V.I., Peculiarities of Biology of Dreissena bugensis (Andr.)-an important biofiltrator of Zaporozhye Reservoir, in Gidrobiologicheskie issledovaniya samoochishcheniya vodoemov (Hydrobiological Studies of Self-Purification of Waterbodies), Leningrad: Nauka. Leningr. otd-nie, 1976, pp. 129–133.

    Google Scholar 

  12. Karatayev, A.Y., Burlakova, L.E., and Padilla, D.K., Physical factors that limit the distribution and abundance of Dreissena polymorpha (Pall.), J. Shellfish Res., 1998, vol. 17, no. 4, pp. 1219–1235.

    Google Scholar 

  13. Richardson, W.B., and Bartsch, L.A., Effects of zebra mussels on food webs: interactions with juvenile bluegill and water residence time, Hydrobiologia, 1997, vol. 354, pp. 141–150.

    Article  Google Scholar 

  14. Wong, W.H., Levinton, J.S., Twining, B.S., and Fisher, N., Assimilation of micro- and mesozooplankton by zebra mussels: A demonstration of the food web link between zooplankton and benthic suspension feeders, Limnol. Oceanogr., 2003, vol. 48, no. 1, pp. 308–312.

    Article  Google Scholar 

  15. Naddafi, R., Pettersson, K., and Eklöv, P., The effect of seasonal variation in selective feeding by zebra mussels (Dreissena polymorpha) on phytoplankton community composition, Freshwater Biol., 2007, vol. 52, pp. 823–842.

    Article  Google Scholar 

  16. Thorp, J.H. and Casper, A.F., Potential effects on zooplankton from species shifts in planktivorous mussels: a field experiment in the St Lawrence River, J. High Resolut. Chromatogr. Chromatogr. Commun., 2002, vol. 47, pp. 107–119.

    Google Scholar 

  17. Porter, K.G., Viable gut passage of gelatinous green algae ingested by Daphnia, Verh. Intern. Ver. Theor. Angew. Limnol., 1975, vol. 19, no. 4, pp. 2840–2850.

    Google Scholar 

  18. Knisely, K. and Geller, W., Selective feeding of four zooplankton species on natural lake phytoplankton, Oecologia., 1986, vol. 69, no. 1, pp. 86–94.

    Article  Google Scholar 

  19. Gladyshev, M.I., Emelianova, A.Y., Kalachova, G.S., Zotina, T.A., Gaevsky, N.A., and Zhilenkov, M.D., Gut content analysis of Gammarus lacustris from a Siberian lake using biochemical and biophysical methods, Hydrobiologia, 2000, vol. 431, pp. 155–163.

    Article  CAS  Google Scholar 

  20. Ederington, M.C., McManus, G.M., and Harvey, H.R. Trophic transfer of fatty acids, sterols and a triterpenoid alcohol between a bacteria, a ciliate and the copepod Acartia tonsa, Limnol. Oceanogr., 1995, vol. 40, no. 5, pp. 860–867.

    Article  CAS  Google Scholar 

  21. Desvilettes, C., Bourdier, G., Amblard, C., and Barth B., Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae, Freshwater Biol., 1997, vol. 38, pp. 629–637.

    Article  CAS  Google Scholar 

  22. Sushchik, N.N., Gladyshev, M.I., Moskvicheva, A.V., Makhutova, O.N., and Kalachova, G.S., Comparison of fatty acid composition in major lipid classes of the dominant benthic invertebrates of the Yenisei river, Compar. Biochem. Physiol., 2003, part B, vol. 134, pp. 111–122.

    Article  CAS  Google Scholar 

  23. Makhutova, O.N. and Khromechek, E.B. Fatty acids of sestonic lipid classes as a tool to study nutrition spectra of rotifers and ciliates in a Siberian eutrophic Reservoir, J. of Siberian Federal University. Biology, 2008. no. 1, pp. 40–59.

  24. Christie, W.W., Extraction and hydrolysis of lipids and some reactions of their fatty acid components, CRC Handbook of chromatography. Lipids, Mangold, H.K., Ed., Boca Raton. Florida: CRC Press, 1984, vol. 1, pp. 33–47.

    Google Scholar 

  25. Sterner, R.W. and Shulz, K.L., Zooplankton nutrition: recent progress and a reality check, Aquatic Ecology., 1998, vol. 32, pp. 261–279.

    Article  Google Scholar 

  26. Brett, M.T. and Muller-Navarra, D.C., The role of highly unsaturated fatty acids in aquatic food web processes, Freshwater Biol., 1997, vol. 38, pp. 483–499.

    Article  CAS  Google Scholar 

  27. Arts, M.T. and Kohler, C.C. Health and Condition in Fish: The Influence of Lipids on Membrane Competency and Immune Response, Lipids in Aquatic Ecosystems, New York: Springer, 2009, pp. 237–255.

    Chapter  Google Scholar 

  28. Brett, M.T., Muller-Navarra, D.C., and Persson, J., Crustacean Zooplankton Fatty Acid Composition, J. High Resolut. Chromatogr. Chromatogr. Commun., New York: Springer, 2009, pp. 115–146.

    Google Scholar 

  29. Gladyshev, M.I., Sushchik, N.N., Makhutova, O.N., Kalacheva, G.S., Kolmakova, A.A., Kravchuk, E.S., and Dubovskaya, O.P., Efficiency of Transfer of Essential Polyunsaturated Fatty Acids through Trophic Chains of Aquatic Ecosystems, Dokl. Akad. Nauk., 2009, vol. 426, no. 4, pp. 549–551.

    Google Scholar 

  30. Bastviken, D., Caraco, N., and Cole, J., Experimental measurements of zebra mussels (Dreissena polymorpha) impacts on phytoplankton community composition, Freshwater Biol., 1998, vol. 39, pp. 375–386.

    Article  Google Scholar 

  31. Dionisio Pires, L.M., Jonker, R.R., Van Donk, E., and Laanbroek, H.J., Selective grazing by adults and larvae of the zebra mussel (Dreissena polymorpha): application of flow cytometry to natural seston, J. High Resolut. Chromatogr. Chromatogr. Commun., 2004, vol. 49, pp. 116–126.

    Google Scholar 

  32. Mikheev, V.P., Composition and Quantity of Dreissena Feed in Natural Environment, Dreissena: sistematika, ekologiya, prakticheskoye primenenie (Dreissena: Systematics, Ecology, and Practical Value), Moscow: Nauka, 1991, pp. 127–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Makhutova.

Additional information

Original Russian Text © O.N. Makhutova, E.G. Pryanichnikova, I.M. Lebedeva, 2012, published in Sibirskii Ekologicheskii Zhurnal, 2012, No. 4, pp. 619–631.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makhutova, O.N., Pryanichnikova, E.G. & Lebedeva, I.M. Comparison of nutrition range in Dreissena polymorpha and Dreissena bugensis mussels by biochemical markers. Contemp. Probl. Ecol. 5, 459–469 (2012). https://doi.org/10.1134/S1995425512040099

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425512040099

Keywords

Navigation