Skip to main content

Advertisement

Log in

Feeding ecology of three freshwater mussel species (Family: Unionidae) in a North American lentic system

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Freshwater mussels are typically considered to be primarily filter-feeders with an ability to pedal feed, however there is limited information regarding interspecific differences in food resources and feeding modes. The objective of this study was to investigate interspecific variation in food resource usage among mussels in a lentic system associated with a reservoir drawdown. We quantified carbon-13 and nitrogen-15 isotopic signatures for three mussel species, including a Federally Threatened species, and their potential food resources in Gantt Lake, Alabama, USA. For all species, carbon-13 derived from limnetic, benthic fine particulate organic matter (FPOM) contributed on average 99% to the mussel diet. Paradoxically, mussels collected from the littoral zone relied primarily on food resources from the limnetic zone, although this spatial disconnect may have been an artifact of the sampling regime. Carbon-13 associated with littoral FPOM, limnetic and littoral suspended particulate organic matter (SPOM) and coarse particulate organic matter (CPOM) contributed < 1%. Elliptio pullata (Lea, Proceedings of the Academy of Natural Science 8: 262, 1856) collected live but emersed for 8 weeks were enriched in nitrogen-15, providing evidence of catabolism during emersion. Results suggest that benthic sources can be a dominant food resource for unionids and that stranded unionids rely on internal energy stores to survive emersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, K. Fogelman, upon reasonable request.

References

  • ADEM, 2017. 2014 Gantt/Point A Reservoirs Report. Rivers and Reservoirs Monitoring Program. Montgomery, AL. 29

  • Anthony, J. L. & J. A. Downing, 2003. Physical impacts of wind and boat traffic on Clear Lake, Iowa, USA. Lake Reservoir Management 19: 1–14.

    Article  Google Scholar 

  • Bloesch, J., 1995. Mechanisms, measurement and importance of sediment resuspension in lakes. Marine and Freshwater Research 46: 295–301.

    Article  Google Scholar 

  • Bowes, R. E., M. H. Lafferty & J. H. Thorp, 2014. Less means more: nutrient stress leads to higher δ15N ratios in fish. Freshwater Biology 59: 1926–1931.

    Article  Google Scholar 

  • Boyd, C. E., 2019. Water quality: An introduction, Springer Nature, Cham:

    Google Scholar 

  • Brendelberger, H. & C. Klauke, 2009. Pedal feeding in freshwater unionid mussels: particle-size selectivity. SIL Proceedings 1922–2010(30): 1082–1084.

    Google Scholar 

  • Chagnon, S. A., 2001. Thunderstorm rainfall in the conterminous United States. Bulletin of the American Meteorological Society 82: 1925–1940.

    Article  Google Scholar 

  • Cherel, Y. & K. Hobson, 2007. Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Marine Ecology Progress Series 329: 281–287.

    Article  Google Scholar 

  • Cherel, Y., K. A. Hobson, F. Bailleul & R. Groscolas, 2005. Nutrition, physiology, and stable isotopes: New information from fasting and molting penguins. Ecology 86: 2881–2888.

    Article  Google Scholar 

  • Christian, A. D., B. N. Smith, D. J. Berg, J. C. Smoot & R. H. Findlay, 2004. Trophic position and potential food sources of 2 species of unionid bivalves (Mollusca:Unionidae) in 2 small Ohio streams. Journal of the North American Benthological Society 23: 101–113.

    Article  Google Scholar 

  • Clench W. J. & R. D. Turner, 1956. Bulletin of the Florida State Museum 1: 152

  • Cook, M. R. & N. E. Moss, 2007. Analysis of sediment loading rates and impacts of unpaved roads on selected tributaries to Gantt and Point A lakes, Covington, County, AL 2002–2007. Geological Survey of Alabama Open File Report 0703.

  • Cross, W. F., J. P. Benstead, P. C. Frost & S. A. Thomas, 2005. Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshwater Biology 50: 1895–1912.

    Article  Google Scholar 

  • Curley, E. A. M., R. Thomas, C. E. Adams & A. Stephen, 2021. Adaptive responses of freshwater pearl mussels, Margaritifera margaritifera, to managed drawdowns. Aquatic Conservation: Marine and Freshwater Ecosystems 32: 466–483.

    Article  Google Scholar 

  • Cyr, H., 2020. Site exposure, substrate, depth, and the thermocline affect the growth of native unionid mussels in a stratified lake. Freshwater Science the University of Chicago Press 39: 773–790.

    Google Scholar 

  • DeNiro, M. J. & S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica Et Cosmochimica Acta 42: 495–506.

    Article  Google Scholar 

  • DeNiro, M. J. & S. Epstein, 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica Et Cosmochimica Acta 45: 343–351.

    Article  Google Scholar 

  • DuBose, T. P., C. L. Atkinson, C. C. Vaughn & S. W. Golladay, 2019. Drought-induced, punctuated loss of freshwater mussels alters ecosystem function across temporal scales. Frountiers in Ecoloyg and Evolution. https://doi.org/10.3389/fevo.2019.00274.

    Article  Google Scholar 

  • Dzialowski, A. R., S. H. Wang, N.-C. Lim, J. H. Beury & D. G. Huggins, 2008. Effects of sediment resuspension on nutrient concentrations and algal biomass in reservoirs of the Central Plains. Lake and Reservoir Management 24: 313–320.

    Article  Google Scholar 

  • Effler, S. W. & D. A. Matthews, 2004. Sediment resuspension and drawdown in a water supply reservoir. Journal of the American Water Resources Association 40: 251–264.

    Article  Google Scholar 

  • Evans, R. D., 1994. Empirical evidence of the importance of sediment resuspension in lakes. Hydrobiologia 284: 5–12.

    Article  Google Scholar 

  • Fogelman, K., J. Stoeckel, H. Abdelrahman & B. Helms, 2022. The relative importance of suspended versus benthic food resources to freshwater mussels in central Texas, USA. Freshwater Biology 00: 1–16. https://doi.org/10.1111/fwb.13901.

    Article  Google Scholar 

  • Frost, P. C., M. A. Xenopoulos & J. H. Larson, 2004. The stoichiometry of dissolved organic carbon, nitrogen, and phosphorus release by a planktonic grazer Daphnia. Limnology and Oceanography 49: 1802–1808. https://doi.org/10.4319/lo.2004.49.5.1802.

    Article  Google Scholar 

  • Gagnon, P. M., S. W. Golladay, W. K. Michener & M. C. Freeman, 2004. Drought responses of frewhater mussels (Unionidae) in Coastal Plain tributaries of the Flint River Basin Georgia. Journal of Freshwater Ecology 19: 667–679.

    Article  Google Scholar 

  • Galbraith, H. S., S. E. Frazier, B. Allison & C. C. Vaughn, 2009. Comparison of gill surface morphology across a guild of suspension-feeding unionid bivalves. Journal of Molluscan Studies 75: 103–107.

    Article  Google Scholar 

  • Gatenby, C. M., R. J. Neves & B. C. Parker, 1996. Influence of sediment and algal food on cultured juvenile freshwater mussels. Journal of the North American Benthological Society 15: 597–609.

    Article  Google Scholar 

  • Gatenby, C., B. Parker & R. J. Neves, 1997. Growth and survival of juvenile rainbow mussels, Villosa iris (Bivalvia: Unionidae) reared on algal diets and sediment. American Malacological Bulletin 14: 57–66.

    Google Scholar 

  • Gough, H. M., A. M. G. Landis & J. A. Stoeckel, 2012. Behaviour and physiology are linked in the responses of freshwater mussels to drought. Freshwater Biology 57: 2356–2366.

    Article  Google Scholar 

  • Gustafson, L., W. Showers, T. Kwak, J. Levine & M. Stoskopf, 2007. Temporal and spatial variability in stable isotope compositions of a freshwater mussel: implications for biomonitoring and ecological studies. Oecologia 152: 140–150.

    Article  Google Scholar 

  • Haag, W. R., 2012. North American freshwater mussels, Cambridge University Press, New York, NY:

    Book  Google Scholar 

  • Haag, W. R. & J. D. Williams, 2014. Biodiversity on the brink: an assessment of conservation strategies for North American freshwater mussels. Hydrobiologia 735: 45–60.

    Article  Google Scholar 

  • Harris, D., W. R. Horwáth & C. van Kessel, 2001. Acid fumigation of soils to remove carbonates prior to total organic carbon or CARBON-13 isotopic analysis. Soil Science Society of America Journal 65: 1853–1856.

    Article  Google Scholar 

  • Hasler, C. T., K. D. Hannan, J. D. Jeffrey & C. D. Suski, 2017. Valve movement of three species of North American freshwater mussels exposed to elevated carbon dioxide. Environmental Science and Pollution Research 24: 15567–15575.

    Article  Google Scholar 

  • Hawkins, A. J. S., 1985. Relationships between the synthesis and breakdown of protein, dietary absorption and turnovers of nitrogen and carbon in the blue mussel, Mytilus edulis. Oecologia 66: 42–49.

    Article  Google Scholar 

  • IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu & B. Zhou (eds)]. Cambridge University Press.

  • Krumins, J. A., D. van Oevelen, T. M. Bezemer, G. B. De Deyn, W. H. G. Hol, E. van Donk, W. de Boer, P. C. de Ruiter, J. J. Middelburg, F. Monroy, K. Soetaert, E. Thebault, J. van de Koppel, J. A. van Veen, M. Viketoft & W. H. van der Putten, 2013. Soil and freshwater and marine sediment food webs: their structure and function. Bioscience 63: 35–42.

    Article  Google Scholar 

  • Lea, I., 1856. Proceedings of the Academy of Natural Science 8: 262

  • Lightfoot, J., 1786. Catalogue of the Portland Museum 100: 2190.

  • Miller, J. M., Bassham, R., Patel, M., 2019. Survivability of mussels, targeting federally listed species, over a 14-week period during the drawdown of Point A Reservoir. A Report to PowerSouth Energy Cooperative and U.S. Fish and Wildlife Service as part of the Gantt Reservoir Drawdown Project Agreement Project No. 2016-F-0576

  • Miller, J., N. T. A. Quach, M. Patel & A. Guillaumet, 2021. Survivability of mussels, targeting federally listed species, over a 13-week period during the drawdown of Gantt Reservoir. A Report to PowerSouth Energy Cooperative and U.S. Fish and Wildlife Service.

  • NatureServe. 2021. NatureServe Network Biodiversity Location Data accessed through NatureServe Explorer [web application]. NatureServe, Arlington, Virginia. Available https://explorer.natureserve.org/.

  • Newton, T. J., C. C. Vaughn, D. E. Spooner, S. J. Nichols & M. T. Arts, 2013. Profiles of biochemical tracers in unionid mussels across a broad geographical range. Journal of Shellfish Research 32: 497–507.

    Article  Google Scholar 

  • Nichols, S. J. & D. Garling, 2000. Food-web dynamics and trophic-level interactions in a multispecies community of freshwater unionids. Canadian Journal of Zoology 78: 871–882.

    Article  Google Scholar 

  • Nichols, S. J., H. Silverman, T. H. Dietz, J. W. Lynn & D. L. Garling, 2005. Pathways of food uptake in native (Unionidae) and introduced (Corbiculidae and Dreissenidae) freshwater bivalves. Journal of Great Lakes Research 31: 87–96.

    Article  Google Scholar 

  • Patterson, H. K. & R. H. Carmichael, 2018. Dissolved oxygen concentration affects δ15N values in oyster tissues: implications for stable isotope ecology. Ecosphere 9: e02154.

    Article  Google Scholar 

  • Peipoch, M., E. Martí & E. Gacia, 2012. Variability in δ15N natural abundance of basal resources in fluvial ecosystems: a meta-analysis. Freshwater Science the University of Chicago Press 31: 1003–1015.

    Google Scholar 

  • Perkins, M. J., Y. K. Y. Mak, L. S. R. Tao, A. T. L. Wong, J. K. C. Yau, D. M. Baker & K. M. Y. Leung, 2018. Short-term tissue decomposition alters stable isotope values and C: N ratio, but does not change relationships between lipid content, C: N ratio, and Δδ13C in marine animals. Plos One. https://doi.org/10.1371/journal.pone.0199680.

    Article  Google Scholar 

  • Phillips, D. L., R. Inger, S. Bearhop, A. L. Jackson, J. W. Moore, A. C. Parnell, B. X. Semmens & E. J. Ward, 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92: 823–835.

    Article  Google Scholar 

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Post, D. M., C. A. Layman, D. A. Arrington, G. Takimoto, J. Quattrochi & C. G. Montaña, 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179–189.

    Article  Google Scholar 

  • R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Raikow, D. F. & S. K. Hamilton, 2001. Bivalve diets in a midwestern U.S. stream: a stable isotope enrichment study. Limnology and Oceanography 46: 514–522.

    Article  Google Scholar 

  • Robson, A. A., C. Garcia De Leaniz, R. P. Wilson & L. G. Halsey, 2010. Behavoural adaptations of mussels to varying levels of food availability and predation risk. Journal of Molluscan Studies 76: 348–353.

    Article  Google Scholar 

  • Schallenberg, M. & C. W. Burns, 2004. Effects of sediment resuspension on phytoplankton: teasing apart the influences of light, nutrients, and algal entrainment. Freshwater Biology 49: 143–159.

    Article  Google Scholar 

  • Schick, J. M., E. Gnaiger, J. Widdows, B. L. Bayne & A. De Zwann, 1986. Activity and metabolism in the mussel Mytilus edulis during intertidal hypoxia and aerobic recovery. Physiological Zoology 59: 627–642.

    Article  Google Scholar 

  • Semmens, B. X., E. J. Ward, J. W. Moore & C. T. Darimont, 2009. Quantifying inter-and intra-population niche variability using hierarchical bayesian stable isotope mixing models. PLoS ONE 4: 1–9.

    Article  Google Scholar 

  • SigmaPlot Version 13.0, 2014.SyStat Software, Inc.

  • Smillie, W. G., 1927. Studies of an epidemic of malaria at the Gantt Impounded Area, Covington County, Alabama. American Journal of Hygiene 7: 40–72.

    Google Scholar 

  • Smith, J. A., D. Mazumder, I. M. Suthers & M. D. Taylor, 2013. To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons. Methods in Ecology and Evolution 4: 612–618.

    Article  Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological stoichiometry: The biology of elements from molecules to the biosphere, Princeton University Press, New Jersey:

    Google Scholar 

  • Stock, B. C., A. L. Jackson, E. J. Ward, A. C. Parnell, D. L. Phillips & B. X. Semmens, 2018. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 2018: 1–27.

    Google Scholar 

  • Stock, B. C. & B. X. Semmens, 2016. MixSIAR GUI User Manual. Version 3.1 1–42

  • Strayer, D., 2008. Freshwater mussel ecology: A multifactor approach to distribution and abundance, University of California Press, California:

    Book  Google Scholar 

  • Tai Tue, N., H. Hamaoka, A. Sogabe, T. D. Quy, M. T. Nhuan & K. Omori, 2012. Food sources of macro-invertebrates in an important mangrove ecosystem of Vietnam determined by dual stable isotope signatures. Journal of Sea Research 72: 14–21.

    Article  Google Scholar 

  • Trochine, C., V. Díaz Villanueva, E. Balseiro & B. Modenutti, 2019. Nutritional stress by means of high C: N ratios in the diet and starvation affects nitrogen isotope ratios and trophic fractionation of omnivorous copepods. Oecologia 190: 547–557.

    Article  Google Scholar 

  • USEPA, 1976. Report on Gantt Lake, Covington County, Alabama: EPA Region IV – Working Paper No. 227. Corvallis Environmental Research Lab – Corvallis, Oregon and Environmental Monitoring and Support Laboratory – Las Vegas, Nevada: 40.

  • USFWS, 2010. Federal Register. 75: 69222–69294.

  • USGS, 2022. National Water Information System data available on the World Wide Web (USGS Water Data for the Nation), accessed [August 10, 2022], at URL [http://waterdata.usgs.gov/nwis/].

  • Vaughn, C. C., S. J. Nichols & D. E. Spooner, 2008. Community and foodweb ecology of freshwater mussels. Journal of the North American Benthological Society 27: 409–423.

    Article  Google Scholar 

  • Weber, A. M., J. E. Bauer & G. Thomas Watters, 2017. Assessment of nutritional subsidies to freshwater mussels using a multiple natural abundance isotope approach. Freshwater Biology 62: 615–629.

    Article  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press, San Diego CA:

    Google Scholar 

  • Williams, J., A. Bogan & J. Garner, 2009. A new species of freshwater mussel, Anodonta hartfieldorum (Bivalvia: Unionidae), from the Gulf Coastal Plain drainages of Alabama, Florida, Louisiana, and Mississippi, USA. Nautilus 123: 25–33.

    Google Scholar 

  • Yasuno, N., K. Shindo, Y. Takagi, G. Kanaya, S. Shikano, Y. Fujimoto, T. Shimada & E. Kikuchi, 2014. Ontogenetic changes in the trophic position of a freshwater Unionidae mussel. Fundamental and Applied Limnology 184: 341–349.

    Article  Google Scholar 

  • Yeager, M. M., D. S. Cherry & R. J. Neves, 1994. Feeding and burrowing behaviors of juvenile Rainbow Mussels, Villosa iris (Bivalvia: Unionidae). Journal of the North American Benthological Society 13: 217–222.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank PowerSouth for granting access, coordinating field volunteers, and providing general resources necessary for the study. Paul Johnson (AL DCNR), Trent Carnley (Power South), Wesley Robertson (Power South), Dilan Manring (Power South), Khalil Carson (Troy University), Kellan Hoffman (Troy University), Cory Harper (Troy University), and Patrick Jordan (Auburn University) provided additional field assistance and Todd Fobian (AL DCNR) provided administrative assistance. Henry Hershey provided assistance in R. We would also like to thank Benjamin Harlow at Washington State University Stable Isotope Core Laboratory for assistance with sample processing.

Funding

Funding was provided by a Section 6 Grant from the Alabama Department of Conservation and Natural Resources. We thank the reviewers who provided useful comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KF: analysis, data curation, writing (original), writing (review and editing). JS: sample collection, writing (original), writing (review and editing), supervision. JM: conceptualization, methodology, data and sample collection, writing (review and editing). BH: conceptualization, methodology, data and sample collection, analysis, data curation, writing (original), writing (review and editing), supervision.

Corresponding author

Correspondence to Kaelyn J. Fogelman.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interest.

Additional information

Handling editor: María del Mar Sánchez-Montoya

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fogelman, K.J., Stoeckel, J.A., Miller, J.M. et al. Feeding ecology of three freshwater mussel species (Family: Unionidae) in a North American lentic system. Hydrobiologia 850, 385–397 (2023). https://doi.org/10.1007/s10750-022-05080-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05080-8

Keywords

Navigation