Skip to main content
Log in

Metal content in higher aquatic plants in a small siberian water reservoir

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The dynamics of metal content in higher aquatic plants (macrophytes) in a small Bugach water reservoir in 1998–2006 was studied. A comparative estimation of the metal content in six macrophyte species (Typha latifolia L., Typha angustifolia L., Polygonium amphibium L., Potamogeton perfoliatus L., Potamogeton pectinatus L., Phragmites australis (Cav) Trin. Ex Steud.) showed that their metal concentrations do not generally exceed those known from the literature. Cluster analysis showed that the macrophyte species under study form two ecological groups with respect to the metal content, i.e., submerged plants (hydrophytes) and emergent aquatic plants (heliophytes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore, J.W. and Ramamoorthy, S., Heavy Metals in Natural Waters, Berlin: Springer, 1984.

    Book  Google Scholar 

  2. Lukina, L.F. and Smirnova, N.N., Fiziologiya vysshikh vodnykh rastenii (Physiology of Higher Aquatic Plants), Kiev: Naukova Dumka, 1988.

    Google Scholar 

  3. Kabata-Pendias, A. and Pendias, H., Trace Elements in Soils and Plants, CRC-Press, 1992.

  4. Il’in, V.B., Tyazhelye metally v sisteme pochva-rastenie (Heavy Metals in the Soil-Plant System), Novosibirsk: Nauka, 1991.

    Google Scholar 

  5. Nikanorov, A.M. and Zhulidov, A.V., Biomonitoring metallov v presnovodnykh ekosistemakh (Biomonitoring of Metals in Freshwater Ecosystems), Leningrad: Gidrometeoizdat, 1991.

    Google Scholar 

  6. Fernandez, J.A., Vazquez, M.D., Lopez, J., and Carballeira, A., Modelling the Extra and Intracellular Uptake and Discharge of Heavy Metals in Fontinalis Antipyretica Transplanted Along a Heavy Metal and pH Contamination Gradient, Environ. Pollut., 2006, vol. 139, pp. 21–31.

    Article  PubMed  CAS  Google Scholar 

  7. Anishchenko, O.V., Gladyshev, M.I., Kravchuk, E.S., Sushchik, N.N., and Gribovskaya, I.V., Distribution and Migration of Metals in Food Chains of the Ecosystem of the River Yenisei near Krasnoyarsk, Vodn. Resur., 2009, vol. 36, no. 5, pp. 623–632.

    Google Scholar 

  8. Anishchenko, O.V., Gladyshev, M.I., Kravchuk, E.S., Kalacheva, G.S., and Gribovskaya, I.V, Assessment of Anthropogenic Pollution of the Yenisei River on the Content of Metals in the Main Components of the Ecosystem in Areas above and below Krasnoyarsk, J. of Siberian Federal University of Biology, 2010, no. 3, pp. 82–98.

  9. Wang, T.C., Weissman, J.C., Ramesh, G., Varadarajan, R., and Benemann, J.R., Parameters for Removal of Toxic Heavy Metals by Water Milfoil (Mytiophyllum Spicatum), Bull. Environ. Contam. Toxicol, 1996, vol. 57, pp. 779–786.

    Article  PubMed  CAS  Google Scholar 

  10. Gladyshev, M.I., Gribovskaya, I.V., Ivanova, E., Moskvicheva, A.V., Muchkina, E.Ya., and Chuprov, S.M., Content of Metals in the Ecosystem and Surroundings of the Recreational and Fish Pond Bugach, Vodn. Resur., 2001, vol. 28, no. 3, pp. 320–328.

    Google Scholar 

  11. Gladyshev, M.I., Gribovskaya, I.V., Moskvicheva, A.V., Muchkina, E.Y., Chuprov, S.M., and Ivanova, E.A., Content of Metals in Compartments of Ecosystem of a Siberian Pond, Arch. Environ. Contam. Toxicol., 2001, vol. 41, no. 2, pp. 157–162.

    Article  PubMed  CAS  Google Scholar 

  12. Gladyshev, M.I., Chuprov, S.M., Kolmakov, V.I., Dubovskaya, O.P., Kravchuk, E.S., Ivanova, E.A., Trusova, M.Yu., Sushchik, N.N., Kalacheva, G.S., Gubanov, V.G., Prokopkin, I.G., Zuev, I.V., and Makhutova, O.N., “Top-Down” Biomanipulation in a Small Siberian Reservoir without Daphnia, Sib. Ekol. Zhurn, 2006, no. 1, pp. 55–64.

  13. Katanskaya, V.M., Vysshaya vodnaya rastitel’nost’ kontinental’nykh vodoemov SSSR. Metody izucheniya (Higher Aquatic Vegetation of the Continental Waters of the USSR), Leningrad: Nauka. Lenigr. otd-nie, 1981.

    Google Scholar 

  14. GOST (State Standard) 30503-97: Forage, Fodder, Feed Raw Materials. Flame Photometric Method for Determining the Sodium Content, 1997.

  15. GOST (State Standard) 30504-97: Forage, Fodder, Feed Raw Materials. Flame Photometric Method for Determination of Potassium, 1998.

  16. GOST (State Standard) 26570-95: Forage, Fodder, Feed Raw Materials. Methods for Determination of Calcium, 1995.

  17. GOST (State Standard) 30502-97: Forage, Fodder, Feed Raw Materials. Atomic Absorption Method for Determination of Magnesium, 1998.

  18. GOST (State Standard) 30692-2000: Forage, Fodder, Feed Raw Materials. Atomic Absorption Method for Determination of Copper, Lead, Zinc, and Cadmium, 2000.

  19. GOST (State Standard) 30538-97: Food Products. Method for Determining Toxic Elements by Atomic-Emission Method, 1997.

  20. Lakin, G.F., Biometriya (Biometry), Moscow: Vyssh. shkola, 1980.

    Google Scholar 

  21. Medvedev, S.S., Fiziologiya rastenii (Physiology of Plants), St. Petersburg: Izd-vo Sankt-Peterburgskogo un-ta, 2004.

    Google Scholar 

  22. Mikryakova, T.F., Heavy Metals in Higher Aquatic Plants of the Gorky Reservoir, Vodn. Resur., 1998, vol. 25, no. 5, pp. 611–613.

    Google Scholar 

  23. Bugakov, P.S., Gorbacheva, S.M., and Chuprova, V.V., Pochvy Krasnoyarskogo kraya (Soils of the Krasnoyarsk Krai), Krasnoyarsk: Kn. izd-vo, 1981.

    Google Scholar 

  24. Moskvicheva, A.V., Patterns of Distribution and Migration of Metals in Trophic Chains in the Reservoir on the Bugach River, Extended Abstract of Cand. Sci. (Biol) Dissertation, Borok, 2002.

  25. Spitsyna, T.P., Evaluation System of Pollution of Natural Water Courses of the Krasnoyarsk Industrial Region, Cand. Sci. (Eng.) Dissertation, Krasnoyarsk, 2005.

  26. Zhou, H.Y., Cheung, R.Y.H., Chan, K.M., and Wong, M.H., Metal Concentrations in Sediments and Tilapia Collected from Inland Waters of Hong Kong, Water Res., 1998, vol. 32, no. (11), pp. 3331–3340.

    Article  CAS  Google Scholar 

  27. Mikryakova, T.F., Accumulation of Heavy Metals in Macrophytes at Different Levels of Water Pollution, Vodn. Resur., 2002, vol. 29, no. 2, pp. 253–255.

    Google Scholar 

  28. Grigor’yan, B.R., Boiko, V.A., Kalimullina, S.N., Faskhutdinova, T.A., Rodionova, E.V., and Aksenov, V.S., Heavy Metals in Some Components of Terrestrial and Aquatic Ecosystems of the Mesha River, Ekologiya, 1996, no. 4, pp. 249–252.

  29. Leonova, G.A. and Bychinskii, V.A., Aquatic Organisms of the Bratsk Reservoir as Objects of Monitoring of Heavy Metals, Vodn. Resur., 1998, vol. 25, no. 5, pp. 603–610.

    Google Scholar 

  30. Pip, E. and Stepaniuk, J., Cadmium, Copper and Lead in Sediments and Aguatic Macrophytes in the Lower Nelson River System, Manitoba, Canada. I. Interspecific Differences and Macrophyte — Sediment Relations, Arch. Hydrobiol., 1992, vol. 124, no. 3, pp. 337–355.

    CAS  Google Scholar 

  31. St-Cyr, L., Cambell, P.G.C., and Guertin, K., Evaluation of the Role of Submerged Plant Beds in the Metal Budget of a Fluvial Lake, Hydrobilogia, 1994, vol. 291, pp. 141–156.

    Article  CAS  Google Scholar 

  32. Sawidis, T., Chettri, M.K., Zachariadis, G.A., and Atratis, J.A., Heavy Metals in Aquatic Plants and Sediments from Water Systems in Macedonia, Greece, Ecotoxicology and Environmental Safety, 1995, vol. 32, pp. 73–80.

    Article  PubMed  CAS  Google Scholar 

  33. Samecka-Cymerman, A. and Kempers, A.J., Bioaccumulation of Heavy Metals by Aquatic Macrophytes Around Wroclaw, Poland, J. High Resolut. Chromatogr. Chromatogr. Commun., 1996, vol. 35, pp. 242–247.

    CAS  Google Scholar 

  34. Szymanowska, A., Samecka-Cymerman, A., and Kempers, A.J., Heavy Metals in Three Lakes in West Poland, J. High Resolut. Chromatogr. Chromatogr. Commun., 1999, vol. 43, pp. 21–29.

    CAS  Google Scholar 

  35. Fedonenko, E.V. and Filippova, E.V., Assessing the Pollution Level by Heavy Metals of the Zaporozhye Reservoir, Uchen. Zapiski TNU, Ser. Biologiya, vol. 21, no. 2, pp. 1–6.

  36. Wierk, D. and Szpakowska, B., Occurrence of Heavy Metals in Aquatic Macrophytes Colonising Small Aquatic Ecosystems, Ecological chemistry and engineering, 2011, vol. 18, no. 3, pp. 369–384.

    Google Scholar 

  37. Mikryakova, T.F., Distribution of Heavy Metals in Higher Aquatic Plants of the Uglich Reservoir, Ekologiya, 1994, no. 1, pp. 16–21.

  38. Mikryakova, T.F. and Papchenkov, V.G., Accumulation of Heavy Metals in Rush Flower (Butomus umbellatus L.) in the Volga Reach of the Rybinsk Reservoir, Biologiya Vnutrennikh Vod, 2000, no. 3, pp. 106–110.

  39. Brankovič, S., Pavlovič-Muratspahič, D., Topuzovič, M., Glišič, R., Bankovič, D., and Stankovič, M., Environmental Study of Some Metals on Several Aquatic Macrophytes, African J. of Biotechnology, 2011, vol. 10, no. 56, pp. 11956–11965.

    Google Scholar 

  40. Poznak, S.S., Zhil’tsova, Yu.V., and Romanovskii, Ch.A., Evaluation of Accumulation of Heavy Metals and Formation of Antioxidant Compounds in Plants in Belarus, Trudy BGU, 2010, vol. 5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ivanova.

Additional information

Original Russian Text © E.A. Ivanova, O.V. Anischenko, I.V. Gribovskaya, G.K. Zinenko, N.S. Nazarenko, V.G. Nemchinov, I.V. Zuev, A.P. Avramov, 2012, published in Sibirskii Ekologicheskii Zhurnal, 2012, No. 4, pp. 485–495.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, E.A., Anischenko, O.V., Gribovskaya, I.V. et al. Metal content in higher aquatic plants in a small siberian water reservoir. Contemp. Probl. Ecol. 5, 356–364 (2012). https://doi.org/10.1134/S1995425512040063

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425512040063

Keywords

Navigation