Skip to main content
Log in

Abiotic factors drive the structure of aquatic plant assemblages in riverine habitats of the Brazilian “Pantanal”

  • Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

The “Pantanal” wetland is one of the largest centers of diversity of aquatic macrophytes of Brazil. The objective of this work was to present a checklist of aquatic macrophytes, and to investigate structure and patterns of occurrence regarding physico-chemical parameters, at Amolar, in the Paraguay River sub-region, in the mid-western “Pantanal” wetland, Corumbá (MS). No previous aquatic plant study has been carried out there so far. The study was conducted in June 2009 in 391 plots (0.5 × 0.5 m). We recorded 65 species of aquatic macrophytes, from 49 genera and 27 families. The richest families were Fabaceae, Poaceae, Convolvulaceae, Onagraceae, and Lentibulariaceae. The most representative life forms were emergent and free floating, comprising the most frequent species: Hymenachne amplexicaulis (Rudge) Nees, Salvinia auriculata Aubl., Ricciocarpos natans (L.) Corda, Lemna aequinoctialis Welw. and Azolla filiculoides Lam. presented the highest relative cover, as well as the highest importance value, followed by S. auriculata. The structure of the community of aquatic macrophytes presents relation with physico-chemical variables, chiefly depth: many species occurred exclusively in shallow areas and others in deep zones. The life forms partially explain the species zonation of macrophytes in relation to depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agostinho AA, Gomes LC, Pelicice FM (2007) Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. Eduem, Maringá

    Google Scholar 

  • Anderson R, Kalff J (1988) Submerged aquatic macrophytes biomass in relation to sediment characteristics in ten temperate lakes. Freshw Biol 19:115–121

    Article  Google Scholar 

  • Apg III (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Barko JW, Adams MS, Clesceri NL (1986) Environmental factors and their consideration in the management of submersed aquatic vegetation—a review. J Aquat Plant Manag 24:1–10

    Google Scholar 

  • Bornette G, Puijalon S (2011) Response of aquatic plants to abiotic factors: a review. Aquat Sci 73:1–14. doi:10.1007/s00027-010-0162-7

    Article  CAS  Google Scholar 

  • Bryson CT, Maddox VL, Carter R (2008) Spread of Cuban Club-Rush (Oxycaryum cubense) in the Southeastern United States. Invasive Plant Sci Manag 1:326–329. doi:10.1614/IPSM-08-083.1

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Casatti L, Mendes HF, Ferreira KM (2003) Aquatic macrophytes as feeding site for small fishes in the Rosana Reservoir, Paranapanema River, southeastern Brazil. Braz J Biol 63:213–222

    Article  CAS  PubMed  Google Scholar 

  • Castro CRT, Garcia R (1996) Competição entre plantas com ênfase no recurso luz. Ciênc Rural 26(1):167–174. doi:10.1590/S0103-84781996000100031

    Article  Google Scholar 

  • Catian G, Leme FM, Francener A, Carvalho FS, Galletti VS, Pott A, Pott VJ, Scremin Dias E, Damasceno Junior GA (2012) Macrophyte structure in lotic-lentic habitats from Brazilian Pantanal. Oecol Aust 16:782–796. doi:10.4257/oeco.2012.1604.05

    Article  Google Scholar 

  • Colwell RK (2009) EstimateS, Version 8.2: statistical estimation of species richness and shared species from samples (Software and User’s Guide). Freeware for Windows and Mac OS. http://viceroy.eeb.uconn.edu/estimates. Accessed 12 Dec 2010

  • Cook CDK (1996) Aquatic and wetland plants of India. Oxford University Press, Oxford

    Google Scholar 

  • Csurhes SM, Mackey AP, Fitzsimmons L (1999) Hymenachne (Hymenachne amplexicaulis) in Queensland. Pest status review series—land protection. Department of Natural Resources and Mines, Queensland

    Google Scholar 

  • Cunha NL, Delatorre M, Rodrigues RB, Vidotto C, Gonçalves F, Scremin-Dias E, Damasceno-Junior GA, Pott VJ, Pott A (2012) Structure of aquatic vegetation of a large lake, western border of the Brazilian Pantanal. Braz J Biol 72(3):519–531. doi:10.1590/S1519-69842012000300015

    Article  CAS  PubMed  Google Scholar 

  • Damasceno Junior GA, Pott A (2011) Métodos de amostragem em estudos fitossociológicos sugeridos para o Pantanal. In: Felfiti JM, Eisenlohr PV, Melo MMRF, Andrade LA, Meira-Neto JAA (eds) Fitossociologia no Brasil: Métodos e estudos de caso, vol 1. Editora UFV, Viçosa

    Google Scholar 

  • Damasceno Júnior GA, Semir J, Santos FAM, Leitão-Filho HF (2004) Tree mortality in a riparian forest at Rio Paraguai, Pantanal, Brazil, after an extreme flooding. Acta Bot Bras 18:839–846. doi:10.1590/S0102-33062004000400014

    Article  Google Scholar 

  • Ferreira FA, Mormul RP, Thomaz SM, Pott A, Pott VJ (2011) Macrophytes in the upper Paraná river floodplain: checklist and comparison with other large South American wetlands. Rev Biol Trop 59:541–556

    PubMed  Google Scholar 

  • Forzza RB, Leitman PM, Costa AF, Carvalho AA Jr, Peixoto AL, Walter BMT, Bicudo C, Zappi D, Costa DP, Lleras E, Martinelli G, Lima HC, Prado J, Stehmann JR, Baumgratz JFA, Pirani JR, Sylvestre L, Maia LC, Lohmann LG, Queiroz LP, Silveira M, Coelho MN, Mamede MC, Bastos MNC, Morim MP, Barbosa MR, Menezes M, Hopkins M, Secco R, Cavalcanti TB, Souza VC (2010) Catálogo de Plantas e Fungos do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro/Andréa Jakobsson Estúdio, Rio de Janeiro

    Book  Google Scholar 

  • Gopal B, Sharma KP (1981) Water-hyacinth (Eichhornia crassipes), most troublesome weed of the world. Hindasia Publications, Delhi

    Google Scholar 

  • Gross EM, Johnson RL, Hairston NG Jr (2001) Experimental evidence for changes in submersed macrophyte species composition caused by the herbivore Acentria ephemerella (Lepidoptera). Oecologia 127:105–114. doi:10.1007/s004420000568

    Article  PubMed  Google Scholar 

  • INPE—Instituto Nacional de Pesquisas Espaciais (2009) Imagem do satélite LANDSAT 5, sensor TM, canais 1, 2, 3, 4, 5 e 7, órbita/ponto: 227/072 de 12/07/2009. São José dos Campos, São Paulo

    Google Scholar 

  • Irgang BE, Pedralli G, Waechter JI (1984) Macrófitos aquáticos da Estação Ecológica do Taim, Rio Grande do Sul, Brasil. Roessleria 6:395–404

    Google Scholar 

  • Johnson J, Omland K (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Junk, WJ, Piedade, MTF (1993) Biomass and primary production of herbaceous plants communities in the Amazon floodplain. Hydrobiologia 263:155–162

    Article  Google Scholar 

  • Lehmann A, Castella E, Lachavanne JB (1997) Morphological traits and spatial heterogeneity of aquatic plants along sediment and depth gradients, Lake Geneva, Switzerland. Aquat Bot 55:281–299

    Article  Google Scholar 

  • Madsen VD, Chambers PA, James WF, Koch EW, Westlake DF (2001) The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71–84. doi:10.1023/A:1017520800568

    Article  Google Scholar 

  • Marion L, Paillisson JM (2002) A mass balance assessment of the contribution of floating-leaved macrophytes in nutrient stocks in an eutrophic macrophyte-dominated lake. Aquat Bot 75:249–260. doi:10.1016/s0304-3770(02)00177-8

    Article  Google Scholar 

  • Martín J, Luque-Larena JJ, López P (2005) Factors affecting escape behavior of Iberian green frogs (Rana perezi). Can J Zool 83:1189–1195. doi:10.1139/z05-114

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) Package ‘vegan’. https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed 06 Aug 2016

  • Padial AA, Bini LM, Thomaz SM (2008) The study of aquatic macrophytes in Neotropics: a scientometrical view of the main trends and gaps. Braz J Biol 68:1051–1059. doi:10.1590/S1519-69842008000500012

    Article  CAS  PubMed  Google Scholar 

  • Pedralli G (1992) Macrófitos aquáticos: centro de diversidade. Ciênc Hoje 14:56–57

    Google Scholar 

  • Pedralli G, Irgang BE, Pereira CP (1985) Macrófitos aquáticos do Município de Rio Grande, Rio Grande do Sul, Brasil. Revista AGROS 20:45–52

    Google Scholar 

  • Pelicice FM, Agostinho AA (2006) Feeding ecology of fishes associated with Egeria spp. patches in a tropical reservoir Brazil. Ecol Freshw Fish 15:10–19. doi:10.1111/j.1600-0633.2005.00121.x

    Article  Google Scholar 

  • Pereira AS, Trindade CRT, Albertoni EF, Palma-Silva C (2012) Aquatic macrophytes as indicators of water quality in subtropical shallow lakes Southern Brazil. Acta Limnol Bras 24:52–63

    Article  Google Scholar 

  • Pivari MO, Pott VJ, Pott A (2008) Macrófitas aquáticas de ilhas flutuantes (baceiros) nas sub-regiões do Abobral e Miranda, Pantanal, MS, Brasil. Acta Bot Bras 22:563–571. doi:10.1590/S0102-33062008000200023

    Article  Google Scholar 

  • Pott VJ, Pott A (2000) Plantas aquáticas do Pantanal. EMBRAPA, Corumbá

    Google Scholar 

  • Pott VJ, Pott A (2003) Dinâmica da vegetação aquática do Pantanal. In: Thomaz SM, Bini LM (eds) Ecologia e manejo de macrófitas aquáticas. Editora da Universidade Estadual de Maringá, Maringá, pp 145–162

    Google Scholar 

  • Pott VJ, Bueno NC, Pereira RAC, Salis SM, Viera NL (1989) Distribuição de macrófitas aquáticas numa lagoa na Fazenda Nhumirim, Nhecolândia, Pantanal, MS. Acta Bot Bras 3:153–168. doi:10.1590/S0102-33061989000300015

    Article  Google Scholar 

  • Pott VJ, Pott A, Lima LCP, Moreira SN, Oliveira AKM (2011) Aquatic macrophyte diversity of the Pantanal wetland and upper basin. Braz J Biol 71:255–263

    Article  CAS  PubMed  Google Scholar 

  • Pott VJ, Ferreira FA, Arantes ACV, Pott A (2012) How many species of aquatic macrophytes are there in the Brazilian Pantanal wetland? An updated checklist. Anais do 1o Congresso Brasileiro de Áreas Úmidas (I CONBRAU), Cuiabá

    Google Scholar 

  • Pressey RL, Adam P (1995) A review of wetland inventory and classification in Australia. Classification and Inventory of the World’s Wetlands, Advances in Vegetation Science, vol 16. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pulido C, Riera JL, Ballesteros E, Chappuis E, Gacia E (2015) Predicting aquatic macrophyte occurrence in soft-water oligotrophic lakes (Pyrenees mountain range). J Limnol 74:143–154. doi:10.4081/jlimnol.2014.965

    Google Scholar 

  • R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 04 July 2014

  • Rocha CG, Resende UM, Lugnani JS (2007) Diversidade de macrófitas em Ambientes aquáticos do IPPAN na Fazenda Santa Emília, Aquidauana, MS. Rev Bras Biociênc 5:456–458

    Google Scholar 

  • Schwarz AM, Hawes I (1997) Effects of changing water clarity on characean biomass and species composition in a large oligotrophic lake. Aquat Bot 56:169–181

    Article  Google Scholar 

  • Silva JSV, Abdon MM (1998) Delimitação do Pantanal brasileiro e suas sub-regiões. EMBRAPA 33:1703–1711

    Google Scholar 

  • Silva RMM, Carniello MA (2007) Ocorrência de macrófitas em lagoas intermitentes e permanentes em Porto Limão, Cáceres-MT. Rev Bras Bioc 5:519–521

    Google Scholar 

  • Soares MTS, Soriano BMA, Abreu UGP, Santos S.A (2010) Monitoramento do comportamento do Rio Paraguai na região de Corumbá, Pantanal Sul-Mato-Grossense, 2009–2010. Embrapa Pantanal Comunicado Técnico 85. http://www.cpap.embrapa.br/publicacoes/online/COT85.pdf. Accessed 10 Aug 2010

  • Soriano BMA (1997) Caracterização climática de Corumbá, MS Embrapa. Boletim de Pesquisa, Corumbá

    Google Scholar 

  • Spence DHN, Maberly SC (1985) Occurrence and ecological importance of HCO3 use among aquatic higher plants. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organism. The American Society of Plant Physiologists, Maryland

    Google Scholar 

  • Tanaka RH, Cardoso LR, Martins D, Marcondes DAS, Mustafá AL (2002) Ocorrência de plantas aquáticas nos reservatórios da Companhia Energética de São Paulo. Planta Daninha 20:101–111. doi:10.1590/S0100-83582002000400012

    Article  Google Scholar 

  • Thomaz SM, Cunha ER (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol Bras 22:218–236

    Article  Google Scholar 

  • Vermaat JE, Santamaria L, Roos PJ (2000) Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Arch Hydrobiol 148:549–562

    Article  CAS  Google Scholar 

  • Vestergaard O, Sand-Jensen K (2000) Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquat Bot 67:85–107. doi:10.1016/S0304-3770(00)00086-3

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Graduate Programs of Plant Biology and of Ecology and Conservation for financial support, to ECOA for logistic support, to the Brazilian agencies for scholarships to C. Aoki (Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq), R. M. Gamarra (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES), and to CAPES and CNPq for grants to A. Pott and E. Scremin-Dias.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Aoki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, C., Teixeira-Gamarra, M.C., Gamarra, R.M. et al. Abiotic factors drive the structure of aquatic plant assemblages in riverine habitats of the Brazilian “Pantanal”. Braz. J. Bot 40, 405–415 (2017). https://doi.org/10.1007/s40415-016-0345-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-016-0345-0

Keywords

Navigation