Skip to main content
Log in

Calculation of Flows of Gas-Liquid Mixtures by a Modified Nodal Method of Characteristics

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

To calculate flows of a gas-liquid mixture, a modified inverse method of characteristics is proposed. An additional fractional time step is introduced in its algorithm, which makes it possible to carry out calculations with a large time step without loss of accuracy and stability. A formulation of boundary conditions on curvilinear walls is discussed in relation to a multidimensional nodal method of characteristics which is based on splitting along the coordinate directions of the original system of equations into a number of one-dimensional subsystems. For the boundary points located on curvilinear impenetrable surfaces, a calculation method based on a method of fictitious nodes is proposed. When testing the modified method, a supersonic interaction of a homogeneous dispersed flow with a barrier is calculated for a flow regime with an attached shock wave. Problems of steady mixture flows near an external obtuse angle, as well as near a cone, which are analogues of Prandtl–Meyer and Busemann flows in gas dynamics, are solved. The calculation results are compared with available self-similar solutions, and a satisfactory agreement is reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Surov, V.S., One-Velocity Model of a Heterogeneous Medium with a Hyperbolic Adiabatic Kernel, Comput. Math. Math. Phys., 2008, vol. 48, no. 6, pp. 1048–1062, https://doi.org/10.1134/ S0965542508060146.

    Article  MathSciNet  MATH  Google Scholar 

  2. Kapila, A., Menikoff, R., Bdzil, J., Son, S., and Stewart, D., Two-Phase Modeling of Deflagration-to-Detonation Transition in Granular Materials: Reduced Equations, Phys. Fluids, 2001, vol. 13, pp. 3002–3024.

    Article  MATH  Google Scholar 

  3. Murrone, A. and Guillard, H., A Five Equation Reduced Model for Compressible Two Phase Flow Problems, J. Comput. Phys., 2005, vol. 202, pp. 664–698.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ma, Z.H., Causon, D.M., Qian, L., Gu, H., Mingham, C.G., and Ferrera, P.M., A GPU Based Compressible Multiphase Hydrocode for Modeling Violent Hydrodynamic Impact Problems, Comput. Fluids, 2015, vol. 120, pp. 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  5. Surov, V.S., Multidimensional Nodal Method of Characteristics for Hyperbolic Systems, Komp. Issled. Model., 2021, vol. 13, no. 1, pp. 19–32; https://doi.org/10.20537/2076-7633-2021-13-1-19-32.

    Article  Google Scholar 

  6. Surov, V.S., Nodal Method of Characteristics in Multifluid Hydrodynamics, J. Eng. Phys. Thermophys., 2013, vol. 86, no. 5, pp. 1151–1159, https://doi.org/10.1007/s10891-013-0937-5.

    Article  Google Scholar 

  7. Nakamura, T., Tanaka, R., Yabec, T., and Takizawa, K., Exactly Conservative Semi-Lagrangian Scheme for Multi-Dimensional Hyperbolic Equations with Directional Splitting Technique, J. Comput. Phys., 2001, vol. 174, no. 1, pp. 171–207.

    Article  MathSciNet  MATH  Google Scholar 

  8. Biryukov, V.A., Miryakha, V.A., Petrov, I.B., and Khokhlov, N.I., Simulation of Elastic Wave Propagation in Geological Media: Intercomparison of Three Numerical Methods, Comput. Math. Math. Phys., 2016, vol. 56, no. 6, pp. 1086–1062.

    Article  MathSciNet  MATH  Google Scholar 

  9. Magomedov, K.M. and Kholodov, A.S., Setochno-kharateristicheskie chislennye metody: uchebnoe posobie dlya vuzov (Grid-Characteristic Numerical Methods: Textbook for Higher Education Institutions), 2nd ed., Moscow: Yurait, 2020.

    Google Scholar 

  10. Sauerwein, H., Numerical Calculations of Multidimensional and Unsteady Flows by the Method of Characteristics, J. Comput. Phys., 1967, vol. 1, pp. 406–432.

    Article  Google Scholar 

  11. Sauer, R., Nichtstationare Probleme der Gasdynamik, Berlin: Springer-Verlag, 1966.

    Book  MATH  Google Scholar 

  12. Parpia, I.H., Kentzer, C.P., and Williams, M.H., Multidimensional Time Dependent Method of Characteristics, AIAA J., 1985, vol. 23, no. 10, pp. 1497–1505.

    MATH  Google Scholar 

  13. Marcum, D.L. and Hoffman, J.D., Calculation of Three-Dimensional Flowfields by the Unsteady Method of Characteristics, Comput. Fluids, 1988, vol. 16, no. 1, pp. 105–117.

    MathSciNet  Google Scholar 

  14. Surov, V.S., Calculation of Heat-Conducting Vapor-Gas-Drop Mixture Flows, Num. An. Appl., 2020, vol. 13, no. 2, pp. 165–179; https://doi.org/10.1134/S199542392002007X.

    Article  MathSciNet  Google Scholar 

  15. Kulikovskii, A.G., Pogorelov, N.V., and Semenov, A.Yu., Matematicheskie voprosy chislennogo reshcheniya giperbolicheskikh sistem uravnenii (Mathematical Problems of Numerical Solutions of Hyperbolic Equation Systems), Moscow: Fizmatlit, 2012.

    Google Scholar 

  16. Roache, P., Vychislitel’naya gidrodinamika (Computational Fluid Dynamics), Moscow: Mir, 1980.

    Google Scholar 

  17. Anderson, D.A., Tannehill, J.C., and Pletcher R.H., Computational Fluid Mechanics and Heat Transfer, Taylor & Francis, 1984.

    MATH  Google Scholar 

  18. Godunov, S.K., Zabrodin, A.V., Ivanov, M.Ya., Kraiko, A.N., and Prokopov, G.P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki (Numerical Solution of Multidimensional Problems of Gas Dynamics), Moscow: Nauka, 1976.

    Google Scholar 

  19. Grishin, Yu.A., Zenkin, V.A., and Khmelev, R.N., Boundary Conditions for Numerical Calculation of Gas Exchange in Piston Engines, J. Eng. Phys. Thermophys., 2017, vol. 90, no. 4, pp. 965–970.

    Article  Google Scholar 

  20. Surov, V.S. On the Problem of Boundary Conditions in the Multidimensional Nodal Method of Characteristics, J. Eng. Phys. Thermophys., 2021, vol. 94, no. 3, pp. 695–701; https://doi.org/10.1007/s10891-021-02346-1.

    Article  Google Scholar 

  21. Surov, V.S., Latent Waves in Heterogeneous Media, J. Eng. Phys. Thermophys., 2014, vol. 87, no. 6, pp. 1463–1468; https://doi.org/10.1007/S10891-014-1151-9.

    Article  Google Scholar 

  22. Surov, V.S., The Godunov Method for Calculating Multidimensional Flows of a One-Velocity Multicomponent Mixture, J. Eng. Phys. Thermophys., 2016, vol. 89, no. 5, pp. 1227–1240; https://doi.org/ 10.1007/s10891-016-1486-5.

    Article  Google Scholar 

  23. Toro, E.F., Riemann Solvers with Evolved Initial Condition, Int. J. Num. Meth. Fluids, 2006, vol. 52, pp. 433–453.

    Article  MathSciNet  MATH  Google Scholar 

  24. Surov, V.S., Shock Adiabat of a One-Velocity Heterogeneous Medium, J. Eng. Phys. Thermophys., 2006, vol. 79, no. 5, pp. 886–892; https://doi.org/10.1007/s10891-006-0179-x.

    Article  Google Scholar 

  25. Surov, V.S., Certain Self-Similar Problems of Flow of a One-Velocity Heterogeneous Medium, J. Eng. Phys. Thermophys., 2007, vol. 80, no. 6, pp. 1237–1246; https://doi.org/10.1007/s10891-007-0160-3.

    Article  Google Scholar 

  26. Surov, V.S., The Busemann Flow for a One-Velocity Model of a Heterogeneous Medium, J. Eng. Phys. Thermophys., 2007, vol. 80, no. 4, pp. 681–688; https://doi.org/10.1007/s10891-007-0092-y.

    Article  Google Scholar 

  27. Surov, V.S., Hyperbolic Models in the Mechanics of Heterogeneous Media, Comput. Math. Math. Phys., 2014, vol. 54, no. 1, pp. 148–157; https://doi.org/10.1134/S096554251401014X.

    Article  MathSciNet  MATH  Google Scholar 

  28. Surov, V.S., Calculation of the Elastic Plastic Deformation of a Solid Body by Multidimensional Nodal Method of Characteristics, Vych. Tekhnol., 2021, vol. 26, no. 4, pp. 39–52; https://doi.org/10.25743/ ICT.2021.26.4.005.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Surov.

Additional information

Translated from Sibirskii Zhurnal Vychislitel’noi Matematiki, 2023, Vol. 26, No. 4, pp. 431-450. https://doi.org/10.15372/SJNM20230407.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surov, V.S. Calculation of Flows of Gas-Liquid Mixtures by a Modified Nodal Method of Characteristics. Numer. Analys. Appl. 16, 359–374 (2023). https://doi.org/10.1134/S1995423923040079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423923040079

Keywords

Navigation