Skip to main content
Log in

Surface-Energy and Acid–Base Properties of Clays Applied As Polymer Modifiers

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

A series of clays are studied as potentially effective fillers for polyolefins. For the purpose of achieving good interaction with the polymers, surface-energy and acid–base properties of clay powders are evaluated using the preferential wetting method. It is shown that the surface of the clay acquires a neutral character as a result of the modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. Biswal, S. Mohanty, and S. K. Nayak, “Thermal stability and flammability of banana-fiber-reinforced polypropylene nanocomposites,” J. Appl. Polym. Sci. 125, 432–443 (2012).

    Article  CAS  Google Scholar 

  2. N. Hegyesi, N. Simon, and B. Pukanszky, “Silane modification of layered silicates and the mechanism of network formation from exfoliated layers,” Appl. Clay Sci. 171, 74–81 (2019).

    Article  CAS  Google Scholar 

  3. B. D. Summ and Yu. V. Goryunov, Physicochemical Basics of Wetting and Spreading (Khimiya, Moscow, 1976) [in Russian].

    Google Scholar 

  4. F. De Almeida, A. Correia, E. Costa De Silva, et al., Compatibilization effect of organophilic clays in PA6/PP polymer blend," Proc. Manuf. 17, 1154–1161 (2018).

    Article  Google Scholar 

  5. M. Entezem, H. A. Khonakdar, A. A. Yousefi, et al., “On nanoclay localization in polypropylene/poly (ethylene terephthalate) blends: Correlation with thermal and mechanical properties,” Mater. Des. 45, 110–117 (2013).

  6. P. Woolston and S. Jeroen, “Isotropic-nematic phase transition in aqueous sepiolite suspensions,” J. Colloid Interface Sci. 437, 65–70 (2015).

    Article  CAS  Google Scholar 

  7. M. Seyed, A. Mohammad, S. Azadeh, et al., “Modeling and analysis of nonlinear elastoplastic behavior of compatibilized polyolefin/polyester/clay nanocomposites with emphasis on interfacial interaction exploration,” Compos. Sci. Technol. 154, 92–103 (2018).

  8. C. Dae-Hyun, B. Bhushan, and J. Dyess, “Mechanisms of static and kinetic friction of polypropylene, polyethylene terephthalate, and high-density polyethylene pairs during sliding,” Tribol. Int. 94, 165–175 (2016).

  9. H. Zhao, S. Zhang, and L. Hong, “Cobalt hexacyanoferratemodified graphene platform electrode and its electrochemical sensing toward hydrogen peroxide,” Chin. J. Anal. Chem. 45, 830–836 (2017).

    Article  CAS  Google Scholar 

  10. D. A. Nguen, Doctoral Dissertation in Chemistry (Kazan, 2016).

  11. I. A. Starostina, D. A. Nguen, and O. V. Stoyanov, “Evaluation of the surface free energy of disperse additives for polymeric compositions under selective wetting conditions,” Polym. Sci., Ser. D 8 (4), 280–286 (2015).

    Article  CAS  Google Scholar 

  12. I. A. Starostina, N. V. Makhrova, O. V. Stoyanov, and I. V. Aristov, “On the evaluation of the acidity and basicity parameters of the surface free energy of polymers,” J. Adhes. 88, 751–765 (2012).

    Article  CAS  Google Scholar 

  13. K. Lyer and G. Schueneman, “Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: Superior dispersion leading to synergistic property enhancements,” Polymer 56, 464–475 (2015).

    Article  CAS  Google Scholar 

  14. A. Taguet, P. Cassagnau, and J. Lopez, “Structuration, selective dispersion and compatibilizing effect of (nano) fillers in polymer blends,” Prog. Polym. Sci. 39, 1526–1563 (2014).

    Article  CAS  Google Scholar 

  15. N. Marzuki and N. Irfiani, “Mechanical properties of kenaf fiber and montmorillonite reinforced recycled polyethylene terephthalate/recycled polypropylene,” Mater. Today: Proc. 5 (2), 879–887 (2018).

  16. I. A. Starostina, Doctoral Dissertation in Chemistry (Kazan, 2011).

  17. I. A. Starostina and O. V. Stoyanov, Acid-Base Interactions and Adhesion in Polymer-Metal Systems (Apple Academic Press, 2014).

    Google Scholar 

  18. E. Kraus, L. Orf, V. Sitnik, R. Perelygina, E. Burdova, I. Starostina, and O. Stoyanov, “Composition and surface energy characteristics of new petroleum resins,” Polym. Eng. Sci., No. 57, 1028–1032 (2017). https://doi.org/10.1002/pen.24482

    Article  Google Scholar 

  19. D. A. Nguen, I. A. Starostina, and O. V. Stoyanov, “Features of wetting metal substrates in medium of neutral hydrocarbon,” Polym. Sci., Ser. D 7 (4), 316–319 (2014).

    Article  CAS  Google Scholar 

  20. C. R. Veale, Fine Powders—Preparation, Properties, and Uses (Wiley, London, 1972).

    Google Scholar 

  21. Khamskii, E.V., Crystallization in Chemical Industry (Khimiya, Moscow, 1979) [in Russian]

    Google Scholar 

Download references

Funding

This work was performed as part of state order no. 10.4763.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vertepa.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vertepa, A.V., Starostina, I.A., Lygina, T.Z. et al. Surface-Energy and Acid–Base Properties of Clays Applied As Polymer Modifiers. Polym. Sci. Ser. D 13, 15–20 (2020). https://doi.org/10.1134/S1995421220010256

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421220010256

Keywords:

Navigation