Skip to main content
Log in

Quantum Process Tomography on Cloud-accessible Quantum Computing Platforms

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Special quantum circuits make it possible to collect experimental data to study the dynamics of quantum processor qubits [1]. The harmonic inversion method restores a set of eigenvalues that form a diagram qualitatively similar to the full spectrum of the open quantum system Liouvillian [2]. The Lindblad tomography method [3] evaluates initial state preparation and measurement error (SPAM), Kraus operators, non-Markovian measure, Hamiltonian and Lindblad operators describing the evolution of an open quantum system. We estimated SPAM errors, reconstructed the evolution using Kraus operators for discrete times, and estimated the non-Markovianity of the first qubits of the \(OriginQ \; Wuyuan \;1\) (Origin Quantum Cloud) and \(ibmq\_belem\) (IBM Quantum Computing) quantum computers. The obtained results demonstrate the comparability of the platforms parameters and a low degree of non-Markovian behavior. The nearest future challenges are related to describing the observed processes in the form of the time-independent Lindblad equation along with the experiments involving two-qubit interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. R. P. Feynman, ‘‘Simulating physics with computers,’’ Int. J. Theor. Phys. 21, 133–153 (2018).

    MathSciNet  Google Scholar 

  2. J. Preskill, ‘‘Quantum computing in the NISQ era and beyond,’’ Quantum 2, 79 (2018).

    Article  Google Scholar 

  3. F. Arute et al., ‘‘Quantum supremacy using a programmable superconducting processor,’’ Nature 574 (7779), 505–510 (2019).

    Article  Google Scholar 

  4. H. Z. Zhong et al., ‘‘Quantum computational advantage using photons,’’ Science 370 (6523), 1460–1463 (2020).

    Article  Google Scholar 

  5. S. Ebadi et al., ‘‘Quantum phases of matter on a 256-atom programmable quantum simulator,’’ Nature 595 (7866), 227–232 (2021).

    Article  Google Scholar 

  6. H. Häffner et al., ‘‘Scalable multiparticle entanglement of trapped ions,’’ Nature 438 (7068), 643–646 (2005).

    Article  Google Scholar 

  7. J. Shang, Z. Zhang, H. K. Ng, ‘‘Superfast maximum-likelihood reconstruction for quantum tomography,’’ Phys. Rev. A 95, 062336 (2017).

  8. E. Bolduc et al., ‘‘Projected gradient descent algorithms for quantum state tomography,’’ NPJ Quantum Inform. 3, 44 (2017).

    Article  Google Scholar 

  9. C. A. Riofrio et al., ‘‘Experimental quantum compressed sensing for a seven-qubit system,’’ Nat. Commun. 8, 15305 (2017).

    Article  Google Scholar 

  10. D. Gross et al., ‘‘Quantum state tomography via compressed sensing,’’ Phys. Rev. Lett. 105, 150401 (2010).

  11. S. T. Flammia et al., ‘‘Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators,’’ New J. Phys. 14, 095022 (2012).

  12. J. Haah et al., ‘‘Sample-optimal tomography of quantum states,’’ in Proceedings of the forty-eighth annual ACM symposium on Theory of Computing (2016), pp. 913–925.

  13. R. O’Donnell, J. Wright, ‘‘Efficient quantum tomography,’’ in Proceedings of the 48th Annual ACM Symposium on Theory of Computing (2016), pp. 899–912.

  14. I. Roth et al., ‘‘Recovering quantum gates from few average gate fidelities,’’ Phys. Rev. Lett. 121, 170502 (2018).

  15. S. Chen et al., ‘‘Tight bounds for state tomography with incoherent measurements,’’ arXiv: 2206.05265 (2022).

  16. G. Tóth et al., ‘‘Permutationally invariant quantum tomography,’’ Phys. Rev. Lett. 105, 250403 (2010).

  17. T. Moroder et al., ‘‘Permutationally invariant state reconstruction,’’ New J. Phys. 14, 105001 (2012).

  18. L. Banchi, W. S. Kolthammer, M. S. Kim, ‘‘Multiphoton tomography with linear optics and photon counting,’’ Phys. Rev. Lett. 121, 250402 (2018).

  19. J. G. Titchener et al., ‘‘Scalable on-chip quantum state tomography,’’ npj Quantum Inform. 4, 19 (2018).

  20. G. Klose, G. Smith, and P. S. Jessen, ‘‘Measuring the quantum state of a large angular momentum,’’ Phys. Rev. Lett. 86, 4721 (2001).

    Article  Google Scholar 

  21. H. F. Hofmann and S. Takeuchi, ‘‘Quantum-state tomography for spin-l systems,’’ Phys. Rev. A 69, 042108 (2004).

  22. M. Cramer et al., ‘‘Efficient quantum state tomography,’’ Nat. Commun. 1, 149 (2010).

    Article  Google Scholar 

  23. B. P. Lanyon et al., ‘‘Efficient tomography of a quantum many-body system,’’ Nat. Phys. 13, 1158–1162 (2017).

    Article  Google Scholar 

  24. D. Perez-Garcia et al., ‘‘Matrix product state representations,’’ quant-ph/0608197 (2006).

  25. T. Baumgratz et al., ‘‘Scalable reconstruction of density matrices,’’ Phys. Rev. Lett. 111, 020401 (2013).

  26. J. Wang et al., ‘‘Scalable quantum tomography with fidelity estimation,’’ Phys. Rev. A 101, 032321 (2020).

  27. O. Gühne and G. Tóth, ‘‘Entanglement detection,’’ Phys. Rep. 474, 1–75 (2009).

    Article  MathSciNet  Google Scholar 

  28. L. Pezzè et al., ‘‘Quantum metrology with nonclassical states of atomic ensembles,’’ Rev. Mod. Phys. 90, 035005 (2018).

  29. A. Elben et al., ‘‘Mixed-state entanglement from local randomized measurements,’’ Phys. Rev. Lett. 125, 200501 (2020).

  30. T. Brydges et al., ‘‘Probing Rényi entanglement entropy via randomized measurements,’’ Science (Washington, DC, U. S.) 364 (6437), 260–263 (2019).

    Article  Google Scholar 

  31. L. Pezzé and A. Smerzi, ‘‘Entanglement, nonlinear dynamics, and the Heisenberg limit,’’ Phys. Rev. Lett. 102, 100401 (2009).

  32. H. Strobel et al., ‘‘Fisher information and entanglement of non-Gaussian spin states,’’ Science 345 (6195), 424–427 (2014).

    Article  Google Scholar 

  33. S. P. Walborn et al., ‘‘Experimental determination of entanglement with a single measurement,’’ Nature 440 (7087), 1022–1024 (2006).

    Article  Google Scholar 

  34. C. Y. Lu et al., ‘‘Experimental entanglement of six photons in graph states,’’ Nat. Phys. 3, 91–95 (2007).

    Article  Google Scholar 

  35. S. Aaronson, ‘‘The learnability of quantum states,’’ Proc. R. Soc. London, Ser. A 463 (2088), 3089–3114 (2007).

    MathSciNet  Google Scholar 

  36. A. Rocchetto et al., ‘‘Experimental learning of quantum states,’’ Sci. Adv. 5 (3), eaau1946 (2019).

  37. S. Aaronson, ‘‘Shadow tomography of quantum states,’’ in Proceedings of the 50th annual ACM SIGACT symposium on theory of computing (2018), pp. 325–338.

  38. C. Bǎdescu and R. O’Donnell, ‘‘Improved quantum data analysis,’’ in Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (2021), pp. 1398–1411.

  39. I. L. Chuang and M. A. Nielsen, ‘‘Prescription for experimental determination of the dynamics of a quantum black box,’’ J. Mod. Opt. 44, 2455–2467 (1997).

    Article  Google Scholar 

  40. M. Mohseni and D. A. Lidar, ‘‘Direct characterization of quantum dynamics,’’ Phys. Rev. Lett. 97 170501 (2006).

  41. M. A. Nielsen and I. Chuang, Quantum Computation and Quantum Information, 10th ed. (Cambridge Univ. Press, Cambridge, 2010).

    Google Scholar 

  42. J. B. Altepeter et al., ‘‘Ancilla-assisted quantum process tomography,’’ Phys. Rev. Lett. 90, 193601 (2003).

  43. J. F. Poyatos, J. I. Cirac, and P. Zoller, ‘‘Complete characterization of a quantum process: the two-bit quantum gate,’’ Phys. Rev. Lett. 78, 390 (1997).

    Article  Google Scholar 

  44. E. Polino et al., ‘‘Photonic quantum metrology,’’ AVS Quantum Sci. 2 (2), (2020).

  45. M. Mohseni, A. T. Rezakhani, and D. A. Lidar, ‘‘Quantum-process tomography: Resource analysis of different strategies,’’ Phys. Rev. A 77, 032322 (2008).

  46. R. Kosut, I. A. Walmsley, and H. Rabitz, ‘‘Optimal experiment design for quantum state and process tomography and hamiltonian parameter estimation,’’ quant-ph/0411093 (2004).

  47. S. T. Merkel et al., ‘‘Self-consistent quantum process tomography,’’ Phys. Rev. A 87, 062119 (2013).

  48. A. V. Rodionov et al., ‘‘Compressed sensing quantum process tomography for superconducting quantum gates,’’ Phys. Rev. B 90, 144504 (2014).

  49. A. Shabani et al., ‘‘Efficient measurement of quantum dynamics via compressive sensing,’’ Phys. Rev. Lett. 106, 100401 (2011).

  50. R. L. Kosut, ‘‘Quantum process tomography via l1-norm minimization,’’ arXiv: 0812.4323, (2008).

  51. M. Kliesch et al., ‘‘Guaranteed recovery of quantum processes from few measurements,’’ Quantum 3, pages171 (2019).

    Article  Google Scholar 

  52. A. Seif, M. Hafezi, and Y. K. Liu, ‘‘Compressed sensing measurement of long-range correlated noise,’’ arXiv: 2105.12589 (2021).

  53. E. Nielsen et al., ‘‘Gate set tomography,’’ Quantum 5, 557 (2021).

    Article  Google Scholar 

  54. R. Blume-Kohout et al., ‘‘Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit,’’ arXiv: 1310.4492 (2013).

  55. C. Song et al., ‘‘Quantum computation with universal error mitigation on a superconducting quantum processor,’’ Sci. Adv. 5, eaaw5686 (2019).

  56. S. Zhang et al., ‘‘Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system,’’ Nat. Commun. 11, 587 (2020).

    Article  Google Scholar 

  57. E. Knill et al., ‘‘Randomized benchmarking of quantum gates,’’ Phys. Rev. A 77, 012307 (2008).

  58. M. J. Epstein et al., ‘‘Investigating the limits of randomized benchmarking protocols,’’ Phys. Rev. A 89, 062321 (2014).

  59. C. Granade, C. Ferrie, and D. G. Cory, ‘‘Accelerated randomized benchmarking,’’ New J. Phys. 17, 013042 (2015).

  60. J. Claes, E. Rieffel, and Z. Wang, ‘‘Character randomized benchmarking for non-multiplicity-free groups with applications to subspace, leakage, and matchgate randomized benchmarking,’’ PRX Quantum 2, 010351 (2021).

  61. H. P. Breuer et al., The Theory of Open Quantum Systems (Oxford Univ. Press, Oxford, 2002).

    Google Scholar 

  62. C. Di Franco, M. Paternostro, and M. S. Kim, ‘‘Hamiltonian tomography in an access-limited setting without state initialization,’’ Phys. Rev. Lett. 102, 187203 (2009).

  63. J. H. Cole et al., ‘‘Identifying an experimental two-state Hamiltonian to arbitrary accuracy,’’ Phys. Rev. A 71, 062312 (2005).

  64. S. J. Devitt, J. H. Cole, and L. C. L. Hollenberg, ‘‘Scheme for direct measurement of a general two-qubit Hamiltonian,’’ Phys. Rev. A 73, 052317 (2006).

  65. J. Zhang and M. Sarovar, ‘‘Quantum Hamiltonian identification from measurement time traces,’’ Phys. Rev. Lett. 113, 080401 (2014).

  66. A. Sone and P. Cappellaro, ‘‘Hamiltonian identifiability assisted by a single-probe measurement,’’ Phys. Rev. A 95, 022335 (2017).

  67. A. J. Leggett et al., ‘‘Dynamics of the dissipative two-state system,’’ Rev. Mod. Phys. 59, 1 (1987).

    Article  Google Scholar 

  68. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, ‘‘Completely positive dynamical semigroups of N-level systems,’’ J. Math. Phys. 17, 821–825 (1976).

    Article  MathSciNet  Google Scholar 

  69. G. Lindblad, ‘‘On the generators of quantum dynamical semigroups,’’ Commun. Math. Phys. 48, 119–130 (1976).

    Article  MathSciNet  Google Scholar 

  70. O. E. Sommer, F. Piazza, and D. J. Luitz, ‘‘Many-body hierarchy of dissipative timescales in a quantum compute,’’ Phys. Rev. Res. 3, 023190 (2021).

  71. G. O. Samach et al., ‘‘Lindblad tomography of a superconducting quantum processor,’’ arXiv: 2105.02338 (2021).

  72. E. Bernstein and U. Vazirani, ‘‘Quantum complexity theory,’’ in Proceedings of the 25th Annual ACM Symposium on Theory of Computing (1993), pp. 11–20.

  73. D. Deutsch, ‘‘Quantum theory, the Church–Turing principle and the universal quantum computer,’’ Proc. R. Soc. London, Ser. A 400 (1818), 97–117 (1985).

  74. D. E. Deutsch, ‘‘Quantum computational networks,’’ Proc. R. Soc. London, Ser. A 425 (1868) 73–90 (1989).

  75. A. C. C. Yao, ‘‘Quantum circuit complexity,’’ in Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science (1993), pp. 352–361.

  76. T. Satoh, Y. Ohkura, and R. Van Meter, ‘‘Subdivided Phase Oracle for NISQ Search Algorithms,’’ IEEE Trans. Quantum Eng. 1, 1–15 (2020).

    Article  Google Scholar 

  77. IBM Quantum Platform. https://quantum-computing.ibm.com/services/resources?tab=systems&system=ibmq_belem. Accessed 2023.

  78. Quantum Cloud-Original Quantum. https://qcloud.originqc.com.cn/en/computerServies/servies. Accessed 2023.

  79. Numpy and Scipy Documentation. https://docs.scipy.org/doc/. Accessed 2023.

Download references

ACKNOWLEDGMENTS

The authors thank S. Denisov for valuable discussions.

Funding

The work was supported by the SEMC ‘‘Mathematics of Future Technologies’’ (no. 075-02-2023-945, February 16, 2023) and the Ministry of Education and Science of the Russian Federation (project no. FSWR-2023-0034). Computations were performed on the UNN ‘‘Lobachevsky’’ supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. E. Vedrukov, A. D. Ivlev, A. V. Liniov, I. B. Meyerov or M. V. Ivanchenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Submitted by A. B. Muravnik)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedrukov, P.E., Ivlev, A.D., Liniov, A.V. et al. Quantum Process Tomography on Cloud-accessible Quantum Computing Platforms. Lobachevskii J Math 45, 119–129 (2024). https://doi.org/10.1134/S1995080224010529

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080224010529

Keywords:

Navigation