Skip to main content
Log in

Strategies with Algebraic Multigrid Method for Coupled Systems

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider strategies for algebraic multigrid-based solution of coupled systems arising from the anisotropic diffusion problem, the two-phase filtration problem, the Stokes and Navier–Stokes equations for incompressible fluid. We consider specific strategies for each problem: the direct application of the algebraic multigrid (AMG), the constrained pressure residual method with AMG preconditioner for the pressure block, the Bramble–Pasciak conjugate-gradient and biconjugate gradient stabilized methods with AMG preconditioner for the elliptic part of the (linearized) discrete operator. The strategies reveal an elliptic part of each system, which is efficiently addressed by the AMG method. As a result, the presented methods demonstrate linear complexity with respect to the size of the coupled problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. A. S. Abushaikha and K. M. Terekhov, ‘‘A fully implicit mimetic finite difference scheme for general purpose subsurface reservoir simulation with full tensor permeability,’’ J. Comput. Phys. 406, 109194 (2020). https://doi.org/10.1016/j.jcp.2019.109194

  2. D. Anuprienko, ‘‘Parallel efficiency of monolithic and fixed-strain solution strategies for poroelasticity problems,’’ arXiv: 2210.06206 (2022). https://doi.org/10.48550/arXiv.2210.06206

  3. N. S. Bakhvalov, ‘‘On the convergence of a relaxation method with natural constraints on the elliptic operator,’’ USSR Comput. Math. Math. Phys. 6, 101–135 (1966). https://doi.org/10.1016/0041-5553(66)90118-2

    Article  MathSciNet  Google Scholar 

  4. W. Barth, R. S. Martin, and J. H. Wilkinson, ‘‘Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection,’’ Numer. Math. 9, 386–393 (1967). https://doi.org/10.1007/978-3-642-86940-2_16

    Article  MathSciNet  Google Scholar 

  5. J. H. Bramble and J. E. Pasciak, ‘‘A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems,’’ Math. Comput. 50, 181-1–17 (1988). https://doi.org/10.1090/S0025-5718-1988-0917816-8

  6. A. Brandt, S. McCormick, and J. Ruge, ‘‘Algebraic multigrid (AMG) for sparse matrix equations,’’ in Sparsity and its Applications, Ed. by D. J. Evans (Cambridge Univ., Press, Cambridge, 1985), pp. 257–283.

    Google Scholar 

  7. M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge, ‘‘Adaptive algebraic multigrid,’’ SIAM J. Sci. Comput. 27, 1261–1286 (2006). https://doi.org/10.1137/040614402

    Article  MathSciNet  Google Scholar 

  8. F. Brezzi, K. Lipnikov, and M. Shashkov, ‘‘Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes,’’ SIAM J. Numer. Anal. 43, 1872–1896 (2005). https://doi.org/10.1137/040613950

    Article  MathSciNet  Google Scholar 

  9. N. Castelletto, J. A. White, and H. A. Tchelepi, ‘‘Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics,’’ Int. J. Numer. Anal. Methods Geomech. 39, 1593–1618 (2015). https://doi.org/10.1002/nag.2400

    Article  Google Scholar 

  10. M. A. Cremon, N. Castelletto, and J. A. White, ‘‘Multi-stage preconditioners for thermal–compositional–reactive flow in porous media,’’ J. Comput. Phys. 418, 109607 (2020). https://doi.org/10.1016/j.jcp.2020.109607

  11. M. Cusini, A. A. Lukyanov, J. Natvig, and H. Hajibeygi, ‘‘A constrained pressure residual multiscale (CPR-MS) compositional solver,’’ in Proceedings of the ECMOR XIV – 14th European Conference on the Mathematics of Oil Recovery (Eur. Assoc. Geosci. Eng., 2014), pp. 1–11. https://doi.org/10.3997/2214-4609.20141778

  12. L. B. da Veiga, K. Lipnikov, and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems, Vol. 11 of Modeling, Simulation and Applications (Springer, Switzerland, 2014). https://doi.org/10.1007/978-3-319-02663-3

  13. R. Eymard, T. Gallouët, C. Guichard, R. Herbin, and R. Masson, ‘‘TP or not TP, that is the question,’’ Comput. Geosci. 18, 285–296 (2014). https://doi.org/10.1007/s10596-013-9392-9

    Article  MathSciNet  Google Scholar 

  14. R. P. Fedorenko, ‘‘A relaxation method for solving elliptic difference equations,’’ USSR Comput. Math. Math. Phys. 1, 1092–1096 (1962). https://doi.org/10.1016/0041-5553(62)90031-9

    Article  Google Scholar 

  15. R. P. Fedorenko, ‘‘The speed of convergence of one iterative process,’’ USSR Comput. Math. Math. Phys. 4, 227–235 (1964). https://doi.org/10.1016/0041-5553(64)90253-8

    Article  Google Scholar 

  16. R. P. Fedorenko, ‘‘Iterative methods for elliptic difference equations,’’ Russ. Math. Surv. 28, 129–195 (1973). https://doi.org/10.1070/RM1973v028n02ABEH001542

    Article  Google Scholar 

  17. M. Fortin and F. Brezzi, Mixed and Hybrid Finite Element Methods (Springer, New York, 1991), Vol. 2. https://doi.org/10.1007/978-1-4612-3172-1

    Book  Google Scholar 

  18. A. George and K. D. Ikramov, ‘‘The closedness of certain classes of matrices with respect to pseudoinversion,’’ Comput. Math. Math. Phys. 42, 1242–1246 (2002).

    MathSciNet  Google Scholar 

  19. U. Ghia, K. N. Ghia, and C. T. Shin, ‘‘High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method,’’ J. Comput. Phys. 48, 387–411 (1982). https://doi.org/10.1016/0021-9991(82)90058-4

    Article  Google Scholar 

  20. M. Griebel, T. Neunhoeffer, and H. Regler, ‘‘Algebraic multigrid methods for the solution of the Navier–Stokes equations in complicated geometries,’’ Int. J. Numer. Methods Fluids 26, 281–301 (1998). https://doi.org/10.1002/(SICI)1097-0363(19980215)26:3<281::AID-FLD632>3.0.CO;2-2

    Article  Google Scholar 

  21. S. Gries, ‘‘System-AMG approaches for industrial fully and adaptive implicit oil reservoir simulations,’’ PhD Thesis (Univ. Köln, Köln, 2015). https://kups.ub.uni-koeln.de/6586/1/Diss_SebastianGries.pdf.

  22. S. Gries, ‘‘On the convergence of system-AMG in reservoir simulation,’’ SPE J. 23, 589–597 (2018). https://doi.org/10.2118/182630-PA

    Article  Google Scholar 

  23. S. Gries, B. Metsch, K. M. Terekhov, and P. Tomin, ‘‘System-AMG for fully coupled reservoir simulation with geomechanics,’’ in Proceedings of the SPE Reservoir Simulation Conference, Galveston, USA (SPE, 2019). https://doi.org/10.2118/193887-MS

  24. W. Hackbusch, Multi-Grid Methods and Applications (Springer Science, New York, 2013), Vol. 4. https://doi.org/10.1007/978-3-662-02427-0

    Book  Google Scholar 

  25. F. H. Harlow and J. E. Welch, ‘‘Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface,’’ Phys. Fluids 8, 2182–2189 (1965). https://doi.org/10.1063/1.1761178

    Article  MathSciNet  Google Scholar 

  26. S. Kinnewig, J. Roth, and T. Wick, ‘‘Geometric multigrid with multiplicative Schwarz smoothers for eddy-current and Maxwell’s equations in deal. II,’’ Examples Counterexamples 1, 100027 (2021). https://doi.org/10.1016/j.exco.2021.100027

  27. S. Klevtsov, N. Castelletto, J. A. White, and H. A. Tchelepi, ‘‘Block-preconditioned Krylov methods for coupled multiphase reservoir flow and geomechanics,’’ in Proceedings of the ECMOR XV – 15th European Conference on the Mathematics of Oil Recovery (Eur. Assoc. Geosci. Eng., 2016), pp. cp-494-00160. https://doi.org/10.3997/2214-4609.201601900

  28. I. Konshin and K. Terekhov, ‘‘Sparse system solution methods for complex problems,’’ in Parallel Computing Technologies, Proceedings of the 16th International Conference, PaCT 2021, Kaliningrad, Russia, September 13–18, 2021, Lect. Notes Comput. Sci. 12942, 53–73 (2021). https://doi.org/10.1007/978-3-030-86359-3_5

  29. I. Konshin and K. Terekhov, ‘‘Distributed parallel bootstrap adaptive algebraic multigrid method,’’ in Russian Supercomputing Days, Lect. Notes Comput. Sci. 13708, 92–111 (2022). https://doi.org/10.1007/978-3-031-22941-1_7

  30. S. Lacroix, Yu. V. Vassilevski, and M. F. Wheeler, ‘‘Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS),’’ Numer. Linear Algebra Appl. 8, 537–549 (2001). https://doi.org/10.1002/nla.264

    Article  MathSciNet  Google Scholar 

  31. V. I. Lebedev, ‘‘Difference analogues of orthogonal decompositions, basic differential operators and some boundary problems of mathematical physics. I,’’ USSR Comput. Math. Math. Phys. 4 (3), 69–92 (1964). https://doi.org/10.1016/0041-5553(64)90240-X

    Article  Google Scholar 

  32. K. Lipnikov, M. Shashkov, D. Svyatskiy, and Yu. Vassilevski, ‘‘Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes,’’ J. Comput. Phys. 227, 492–512 (2007). https://doi.org/10.1016/j.jcp.2008.03.007

    Article  MathSciNet  Google Scholar 

  33. R. Liska, M. Yu. Shashkov, and A. V. Solovjov, ‘‘Support-operators method for pde discretization: Symbolic algorithms and realization,’’ Math. Comput. Simul. 35, 173–183 (1993). https://doi.org/10.1016/0378-4754(93)90012-J

    Article  Google Scholar 

  34. P. Luo, C. Rodrigo, F. J. Gaspar, and C. W. Oosterlee, ‘‘Uzawa smoother in multigrid for the coupled porous medium and Stokes flow system,’’ SIAM J. Sci. Comput. 39, S633–S661 (2017). https://doi.org/10.1137/16M1076514

    Article  MathSciNet  Google Scholar 

  35. B. Metsch, ‘‘Algebraic multigrid (AMG) for saddle point systems,’’ PhD Thesis (Univ. Landesbibliothek, Bonn, 2013). https://hdl.handle.net/20.500.11811/5762

  36. S. Nardean, M. Ferronato, and A. S. Abushaikha, ‘‘A novel block non-symmetric preconditioner for mixed-hybrid finite-element-based Darcy flow simulations,’’ J. Comput. Phys. 442, 110513 (2021). https://doi.org/10.1016/j.jcp.2021.110513

  37. A. Naumovich and F. J. Gaspar, ‘‘On a multigrid solver for the three-dimensional Biot poroelasticity system in multilayered domains,’’ Comput. Vis. Sci. 11, 77–87 (2008). https://doi.org/10.1007/s00791-007-0059-8

    Article  MathSciNet  Google Scholar 

  38. A. Naumovich, ‘‘Efficient numerical methods for the Biot poroelasticity system in multilayered domains,’’ PhD Thesis (Tech. Univ., Kaiserslautern, 2007). https://nbn-resolving.org/urn:nbn:de:hbz:386-kluedo-20967

  39. K. Nikitin, K. Terekhov, and Yu. Vassilevski, ‘‘A monotone nonlinear finite volume method for diffusion equations and multiphase flows,’’ Comput. Geosci. 18, 311–324 (2014). https://doi.org/10.1007/s10596-013-9387-6

    Article  MathSciNet  Google Scholar 

  40. M. Olshanskii, ‘‘Multigrid analysis for the time dependent Stokes problem,’’ Math. Comput. 81(277), 57–79 (2012). https://doi.org/10.1090/S0025-5718-2011-02494-4

    Article  MathSciNet  Google Scholar 

  41. C. W. Oosterlee and P. Wesseling, ‘‘Multigrid schemes for time-dependent incompressible Navier–Stokes equations,’’ IMPACT Comput. Sci. Eng. 5, 153–175 (1993). https://doi.org/10.1006/icse.1993.1007

    Article  MathSciNet  Google Scholar 

  42. D. W. Peaceman, ‘‘Interpretation of well-block pressures in numerical reservoir simulation (includes associated paper 6988),’’ Soc. Pet. Eng. J. 18, 183–194 (1978). https://doi.org/10.2118/6893-PA

    Article  Google Scholar 

  43. P. Rauwoens, P. Troch, and J. Vierendeels, ‘‘A geometric multigrid solver for the free-surface equation in environmental models featuring irregular coastlines,’’ J. Comput. Appl. Math. 289, 22–36 (2015). https://doi.org/10.1016/j.cam.2015.03.029

    Article  MathSciNet  Google Scholar 

  44. M. Raw, ‘‘A coupled algebraic multigrid method for the 3D Navier–Stokes equations,’’ in Fast Solvers for Flow Problems: Proceedings of the 10th GAMM-Seminar Kiel, January 14–16, 1994 (Springer, 1995), pp. 204–215. https://doi.org/10.1007/978-3-663-14125-9_17

  45. J. W. Ruge and K. Stüben, ‘‘Algebraic multigrid,’’ in Multigrid Methods (SIAM, Philadelphia, 1987), pp. 73–130. https://doi.org/10.1137/1.9781611971057.ch4

    Book  Google Scholar 

  46. A. A. Samarskii, V. F. Tishkin, A. P. Favorskii, and M. Yu. Shashkov, ‘‘Operational finite-difference schemes,’’ Differ. Equat. 17 (7), 854–862 (1981). https://www.researchgate.net/publication/259675702_Operational_finite-difference_schemes.

  47. M. Stoll and A. Wathen, ‘‘Combination preconditioning and the Bramble–Pasciak\({}^{+}\) preconditioner,’’ SIAM J. Matrix Anal. 30, 582–608 (2008). https://doi.org/10.1137/070688961

    Article  MathSciNet  Google Scholar 

  48. K. Stüben, ‘‘A review of algebraic multigrid,’’ in Numerical Analysis: Historical Developments in the 20th Century (Elsevier, Amsterdam, 2001), pp. 331–359. https://doi.org/10.1016/B978-0-444-50617-7.50015-X

    Book  Google Scholar 

  49. K. Stüben, J. W. Ruge, T. Clees, and S. Gries, ‘‘Algebraic multigrid: From academia to industry,’’ in Scientific Computing and Algorithms in Industrial Simulations: Projects and Products of Fraunhofer SCAI (Springer, 2017), pp. 83–119. https://doi.org/10.1007/978-3-319-62458-7_5

    Book  Google Scholar 

  50. S. P. Vanka, ‘‘Block-implicit multigrid solution of Navier–Stokes equations in primitive variables,’’ J. Comput. Phys. 65, 138–158 (1986). https://doi.org/10.1016/0021-9991(86)90008-2

    Article  MathSciNet  Google Scholar 

  51. S. P. Vanka, ‘‘A calculation procedure for three-dimensional steady recirculating flows using multigrid methods,’’ Comput. Methods Appl. Mech. Eng. 55, 321–338 (1986). https://doi.org/10.1016/0045-7825(86)90058-7

    Article  Google Scholar 

  52. M. Wabro, ‘‘Coupled algebraic multigrid methods for the Oseen problem,’’ Comput. Vis. Sci. 7, 141–151 (2004). https://doi.org/10.1007/s00791-004-0138-z

    Article  MathSciNet  Google Scholar 

  53. P. Wesseling and C. W. Oosterlee, ‘‘Geometric multigrid with applications to computational fluid dynamics,’’ J. Comput. Appl. Math. 128, 311–334 (2001). https://doi.org/10.1016/S0377-0427(00)00517-3

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation grant 21-71-30023. Project information link https://rscf.ru/en/project/21-71-30023/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Konshin, K. Terekhov or Yu. Vassilevski.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konshin, I., Terekhov, K. & Vassilevski, Y. Strategies with Algebraic Multigrid Method for Coupled Systems. Lobachevskii J Math 45, 251–261 (2024). https://doi.org/10.1134/S199508022401027X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022401027X

Keywords:

Navigation