Skip to main content
Log in

A Lax Representation of the Charney–Obukhov Equation for the Ocean

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We find a Lax representation of the 4D Charney–Obukhov equation for the ocean in the \(\beta\)-plane approximation. We prove that a parameter involved in the Lax representation is non-removable. Then we derive a special Bäcklund transformation for the equation under the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. J. Pedlosky, Geophysical Fluid Dynamics (Springer, Berlin, 1987).

    Book  MATH  Google Scholar 

  2. A. S. Monin, Theoretical Foundations of Geophysical Hydrodynamics (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  3. V. I. Petviashvili and O. A. Pokhotelov, Solitary Waves in Plasmas and in the Atmosphere (Energoatomizdat, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  4. J. R. Holton, An Introduction to Dynamic Meteorology (Academic, New York, 2004).

    Google Scholar 

  5. R. N. Miller, ‘‘Forecasting of the ocean’s weather: Numerical models for application to oceanographic data,’’ in Fluids and Plasmas: Geometry and Dynamics, Ed. by J. E. Marsden, Vol. 28 of Contemporary Mathematics (AMS, Providence, RI, 1984).

  6. A. G. Kudryavtsev and N. N. Myagkov, ‘‘Symmetry group application for the (3+1)-dimensional Rossby waves,’’ Phys. Lett. A 375, 586–588 (2011).

    Article  MathSciNet  Google Scholar 

  7. A. G. Kudryavtsev and N. N. Myagkov, ‘‘New exact spatially localized solutions of the (3+1)-dimensional Charney–Obukhov equation for the ocean,’’ Phys. Fluids 34, 126604 (2022).

  8. A. G. Kudryavtsev and N. N. Myagkov, ‘‘New solutions for the (3+1)-dimensional Charney–Obukhov equation,’’ Phys. Lett. A 427, 127901 (2022).

  9. A. G. Kudryavtsev and N. N. Myagkov, ‘‘On exact solutions of the (3+1)-dimensional Charney–Obukhov equation for the ocean,’’ Phys. Lett. A 446, 128282 (2022).

  10. V. E. Zakharov, A. S. Monin, and L. I. Piterbarg, ‘‘Hamiltonian description of the baroclinic Rossby–Blinova waves,’’ Dokl. Akad. Nauk USSR 295, 1061–1064 (1987).

    MATH  Google Scholar 

  11. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics, 2nd ed. (Pergamon, Oxford, 1987).

    Google Scholar 

  12. Y. C. Li, ‘‘A Lax pair for the two dimensional Euler equation,’’ J. Math. Phys. 42, 3552–3553 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. C. Li and A. V. Yurov, ‘‘Lax pairs and Darboux transformations for Euler equations,’’ Stud. Appl. Math. 111, 101–113 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Y. Lou, M. Jia, F. Huang, and X. Y. Tang, ‘‘Bäcklund transformations, solitary waves, conoid waves and Bessel waves of the (2+1)-dimensional Euler equation,’’ Int. J. Theor. Phys. 16, 2082–2095 (2007).

    Article  MATH  Google Scholar 

  15. O. I. Morozov, ‘‘Extensions of the symmetry algebra and Lax representations for the two-dimensional Euler equation,’’ arXiv: 2304.120772v3.

  16. I. S. Krasil’shchik and A. M. Vinogradov, ‘‘Nonlocal symmetries and the theory of coverings,’’ Acta Appl. Math. 2, 79–86 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  17. I. S. Krasil’shchik and A. M. Vinogradov, ‘‘Nonlocal trends in the geometry of differential equations: Symmetries, conservation laws, and Bäcklund transformations,’’ Acta Appl. Math. 15, 161–209 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. M. Vinogradov and I. S. Krasil’shchik, Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Vol. 182 of Transl. Math. Monogr. (Faktorial, Moscow, 2005; Am. Math. Soc., Providence, RI, 1999).

  19. I. S. Krasil’shchik, ‘‘On one-parametric families of Bäcklund transformations,’’ Preprint DIPS-1/2000 (Diffiety Inst., Pereslavl-Zalessky, 2000).

    Google Scholar 

  20. S. Igonin and J. Krasil’shchik, ‘‘On one-parametric families of Bäcklund transformations,’’ in Lie Groups, Geometric Structures and Differential Equations—One Hundred Years After Sophus Lie, Ed. by T. Morimoto, H. Sato, and K. Yamaguchi, Adv. Studies Pure Math. 37, 99–114 (2002).

  21. S. Igonin, P. Kersten, and I. Krasil’shchik, ‘‘On symmetries and cohomological invariants of equations possessing flat representations,’’ Diff. Geom. Appl. 19, 319–342 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Marvan, ‘‘On the horizontal gauge cohomology and nonremovability of the spectral parameter,’’ Acta Appl. Math. 72, 51–65 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Baran and M. Marvan, Jets. A Software for Differential Calculus on Jet Spaces and Diffieties. http://jets.math.slu.cz/.

Download references

ACKNOWLEDGMENTS

I am very grateful to I.S. Krasil’shchik for important discussions. Computations were supported by the Jets software [23].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Morozov.

Additional information

(Submitted by I. S. Krasil’shchik)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, O.I. A Lax Representation of the Charney–Obukhov Equation for the Ocean. Lobachevskii J Math 44, 3973–3975 (2023). https://doi.org/10.1134/S199508022309024X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022309024X

Keywords:

Navigation