Skip to main content
Log in

The Coupled Model for Surface Modification of Titanium Nickelide

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a coupled model of coating modification placed on a substrate is proposed. The model takes into account the different channels of stress effect on the evolution of coating and transition zone composition. The coupled model of coated material modification by pulsed electron beam is formulated for the first time, with particular attention paid to the mutual influence of stresses arising from composition changes and diffusion transport. Examples of calculations for the Ta-TiN system are presented which demonstrate both qualitative and quantitative differences between coupled and uncoupled problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. S. Eroglu and B. Gallois, ‘‘Residual stresses in chemically vapor deposited coatings in the Ti-C-N system,’’ J. Phys. IV 3, 155–162 (1993).

    Google Scholar 

  2. T. W. Clyne and S. C. Gill, ‘‘Residual stresses in thermal spray coatings and their effect on interfacial adhesion: A review of recent work,’’ J. Therm. Spray Technol. 5, 401–418 (1996).

    Article  Google Scholar 

  3. A. A. Ashmarin, A. A. Lozovan, S. Ya. Betsofen, V. S. Moiseyev, E. P. Kubatina, and M. A. Lebedev, ‘‘Residual stresses in surface layers and coatings,’’ J. Phys.: Conf. Ser. 2144, 012011 (2021).

    Google Scholar 

  4. A. Akbari, J. P. Riviere, C. Templier, E. le Bourhis, and G. Abadias, ‘‘Hardness and residual stresses in TiN-Ni—nanocomposite coatings deposited by reactive dual ion beam sputtering,’’ Rev. Adv. Mater. Sci. 15, 111–117 (2007).

    Google Scholar 

  5. G. Montay, A. Cherouat, A. Nussair, and J. Lu, ‘‘Residual stresses in coating technology,’’ J. Mater. Sci. Technol. 20, 81–84 (2004).

    Google Scholar 

  6. B. Marzbanrad, E. Toyserkani, and H. Jahed, ‘‘Customization of residual stress induced in cold spray printing,’’ J. Mater. Process. Tech. 289, 116928 (2021).

    Article  Google Scholar 

  7. X. Zhang, Y. Wu, B. Xu, and H. Wang, ‘‘Residual stresses in coating-based systems, Part I: Mechanisms and analytical modeling,’’ Front. Mech. Eng. China 2 (1), 1–12 (2007).

    Article  Google Scholar 

  8. J. Ji, J. Zhou, X. Pang, Sh. Dong, R. Hu, and A. Hu, ‘‘The microstructure model on the residual stress distribution of metal-ceramic coating,’’ Comput. Mater. Sci. 85, 332–339 (2014).

    Article  Google Scholar 

  9. P. Yanez-Contreras, M. Leon-Rodriguez, F. J. Santander-Bastida, J. M. Medina-Flores, J. A. Jimenez-Garcia, and V. Ganados-Alejo, ‘‘Study of the evolution of the residual stresses in thermal barrier coatings from manufacturing to its operation work,’’ Coatings 12, 1068 (2022).

    Article  Google Scholar 

  10. M. Rajabi, M. R. Aboutalebi, S. H. Seyedein, and S.A. Ataie, ‘‘Simulation of residual stress in thick thermal barrier coating (TTBC) during thermal shock: A response surface-finite element modeling,’’ Ceram. Int. 48, 5299–5311 (2022).

    Article  Google Scholar 

  11. J. Du, G. Yu, Y. Jia, C. Liu, Zh. Sui, X. Gao, F. Wang, and Y. Song, ‘‘Numerical study of residual stresses in environmental barrier coatings with random rough geometry interfaces,’’ Ceram. Int. 49, 5748–5759 (2023).

    Article  Google Scholar 

  12. J. Fengb, J. Wu, L. Guo, and H. Guo, ‘‘Finite element analysis on temperature field and stress distribution of thermal barrier coatings by laser modification and CMAS corrosion,’’ Corros. Commun. 6, 29–39 (2022).

    Article  Google Scholar 

  13. N. Zhang, Yi-fei Xu, Miao-hui Wang, Xiao-dong Hou, Bo-rui Du, Xue-yuan Ge, Hua Shi, and Xu Xie, ‘‘M2 coating prepared by ultra-high speed laser cladding: Microstructure and interfacial residual stress,’’ Mater. Today Commun. 35, 105638 (2023).

    Article  Google Scholar 

  14. Y. Liu, T. Ding, H. Lv, D. Hu, Y. Zhang, H. Chen, Y. Chen, and J. She, ‘‘Microstructure and properties of Ta-reinforced cobalt based composite coatings processed by direct laser deposition,’’ Surf. Coat. Technol. 447, 128874 (2022).

    Article  Google Scholar 

  15. Y. Yushkov, E. Oks, A. Kazakov, A. Tyunkov, and D. Zolotukhin, ‘‘Electron-beam synthesis and modification and properties of boron coatings on alloy surfaces,’’ Ceramics 5, 706–720 (2022).

    Article  Google Scholar 

  16. K. V. Ivanov, A. E. Chesnokov, and A. V. Smirnov, ‘‘Application of high current pulsed electron beam irradiation to smoothing of cold spray aluminum bronze coating,’’ Vacuum 197, 110780 (2022).

    Article  Google Scholar 

  17. L. L. Meisner, A. B. Markov, V. P. Rotshtein, G. E. Ozur, S. N. Meisner, E. V. Yakovlev, V. O. Semin, Yu. P. Mironov, T. M. Poletika, S. L. Girsova, and D. A. Shepel, ‘‘Microstructural characterization of Ti-Ta-based surface alloy fabricated on TiNi SMA by additive pulsed electron-beam melting of film/substrate system,’’ J. Alloys Compd. 730, 376–385 (2018).

    Article  Google Scholar 

  18. J. Liu, X. Li, J. Bai, T. Zhang, Y. Xu, and Y. Yu, ‘‘Effects of thermal treatment on microstructure and wear properties of Ni60/CeO2 composite coating 35CrMoV steel by laser cladding,’’ Coatings 12, 1575 (2022).

    Article  Google Scholar 

  19. O. N. Kryukova, A. G. Knyazeva, and A. L. Maslov, ‘‘Evolution of stresses in the coating-substrate system under pulsed electron beam irradiation,’’ Russ. Phys. J. 65, 625–634 (2022).

    Article  MATH  Google Scholar 

  20. A. G. Knyazeva and V. N. Demidov, ‘‘Transfer coefficients for three component deformable alloy,’’ Vestn. PermGTU, Mekh. 3, 84–99 (2011).

    Google Scholar 

  21. A. G. Knyazeva and O. N. Kryukova, ‘‘Coupled model of controlled synthesis, of a composite on a substrate,’’ in Actual Problems of Calculus Mathematics and Informatics, Lobachevskii J. Math. 43, 1640–1655 (2022).

    Article  Google Scholar 

  22. M. A. Mikolaichuk and A. G. Knyazeva, ‘‘Effect of stresses and strains on impurity redistribution in a plate under uniaxial loading,’’ J. Appl. Mech. Tech. Phys. 51, 422–430 (2010).

    Article  MATH  Google Scholar 

  23. A. G. Knyazeva and M. A. Mikolaychuk, ‘‘Saturation of a plate with an environmental impurity under mechanical loading conditions,’’ Mech. Solids 5, 692–704 (2011).

    Article  Google Scholar 

  24. A. G. Knyazeva and N. V. Bukrina, ‘‘A coupled model of composite synthesis in combustion regime,’’ Combust. Theory Model. 26, 152–178 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  25. N. E. B. Cowern, P. C. Zalm, P. van der Sluis, D. J. Gravesteijn, and W. B. de Boer, ‘‘Diffusion in strained Si(Ge),’’ Phys. Rev. Lett. 72, 2585–2588 (1994).

    Article  Google Scholar 

  26. N. E. B. Cowern, ‘‘Diffusion in a single crystal within a stressed environment,’’ Phys. Rev. Lett. 99, 155903 (2007).

    Article  Google Scholar 

  27. B. Boley and J. Weiner, Theory of Thermal Stresses (Wiley, New York, 1960).

    MATH  Google Scholar 

  28. O. N. Kryukova, A. G. Knyazeva, and A. L. Maslov, ‘‘Physical mechanisms of stress-field formation near the coating-substrate interface during electron-beam processing,’’ Russ. Phys. J. 63, 968–975 (2020).

    Article  Google Scholar 

  29. A. G. Knyazeva, O. N. Kryukova, and A. L. Maslov, ‘‘Modelling of transition zone formation between thin Si or Ta film deposited on TiNi under low-energy electron beam irradiation,’’ Mater. Res. Express 6, 1065G5 (2019).

Download references

Funding

This work has been performed according to the Government Research Assignment for ISPMS SB RAS, project FWRW-2022-0003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. N. Kryukova or A. G. Knyazeva.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryukova, O.N., Knyazeva, A.G. The Coupled Model for Surface Modification of Titanium Nickelide. Lobachevskii J Math 44, 2317–2325 (2023). https://doi.org/10.1134/S1995080223060483

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223060483

Keywords:

Navigation